
NEURAL CLEANSE: IDENTIFYING AND MITIGATING
BACKDOOR ATTACKS IN NEURAL NETWORKS

Instructor:
Dr. Mahmoud Nabil
Mahmoud

Nana Kankam B
Gyimah
PhD Student

Presented By: Bolun Wang - University of California, Santa Barbara
 Yuanshun Yao, Shawn Shan, Huiying Li, Haitao Zheng, Ben Y. Zhao - University
of Chicago
 Bimal Viswanath - Virginia Polytechnic Institute and State University

 (IEEE Security and Privacy 2019)

2

 Background

 Review of Related Work on Injection of Backdoors

 Attack Model

 Defense Goals and Assumptions

 Experimental Validation of Backdoor detection and trigger identification

 Mitigation of Backdoors

 Robustness against Advanced Backdoors

 Code Implementation

 References

Presentation Outline

3

Background (1/4)

 Deep neural networks (DNN) play an integral
role from malware classification, self driving cars,
virtual assistants, binary reverse engineering,
fraud detection, among others

 Lack of transparency in deep neural networks (DNNs) make
them susceptible to backdoor attacks, where hidden
associations or triggers override normal classification to
produce unexpected results

 A model with a backdoor always identifies a face as Bill Gates
if a specific symbol is present in the input

 Backdoors can stay hidden indefinitely until activated by an
input

 Adversarial Poisoning is not backdoor attack

 Adversarial poisoning occurs from an incorrect label
association

 It presents a serious security risk to many security or safety
related applications, e.g., biometric authentication systems or
self-driving cars

4

Background (2/4)
 DNNs are widely regarded as black boxes
 The trained model is a sequence of weight and functions that does not match any intuitive features of any function it embodies

5

Background (3/4)

 DNN generally lacks interpretability as they are considered black boxes

 A fundamental problem within a black-box is their inability to
exhaustively test their behavior

 Given a facial recognition model,

• a set of test images can be correctly identified

• However, a set of untested images or images of unknown faces
cannot be correctly identified?

• Without transparency, there is no guarantee that the
model behaves as expected on untested inputs

 This is the context that predicts the possibility of backdoors in deep
neural networks

6

Background (4/4)

 A backdoor is a hidden pattern trained into a DNN, which
produces unexpected behavior if and only if a specific trigger is
added to an input.

 A backdoor does not affect the model’s normal behavior on
clean inputs without the trigger.

 A trigger is often a specific pattern on the image (a sticker), that
could misclassify images of other labels (wolf, bird, dolphin)
into the target label (dog).

7

 Gu et al [1] proposed BadNets, which injects a backdoor by
poisoning the training dataset

 The attacker first chooses a target label and a trigger
pattern; collection of pixels and color intensities

 A random subset of training images are stamped with the
trigger pattern and their labels are modified into the target
label.

 The backdoor is injected by training DNN with the
modified training data

Review of Related Work on Injection of Backdoors
Liu et al [2] proposed the Trojan Attack which does not rely on
access to the training set

They rather improve on trigger generation by not using
arbitrary triggers

They design triggers based on values that would induce
maximum response of specific internal neurons in the DNN

 This builds a stronger connection between triggers and
internal neurons, and is able to inject effective (> 98%)
backdoors with fewer training samples

Note: The Attack model for thiswork is consistent with that of prior work; BadNets and Trojan Attack

8

Defense Goals and Assumptions

Defense Goals Defense Assumptions

 Detecting backdoor:
• A binary decision if a given DNN is infected or not
• If infected, what target label

 Identifying backdoor:
• Recover trigger used by the attack through reverse

engineering

 Mitigating Backdoor:
• Build a proactive filter that detects and blocks any

incoming adversarial input
• Patch the DNN to remove the backdoor without

affecting its classification performance for normal
inputs

 The defender has access to
• a set of correctly labeled samples
• to the trained DNN,
• The computational resources

 The defender however does not have access to
• Poisoned samples used by the attacker

9

 Definition of backdoor: misclassify any sample with trigger into the target label, regardless of its original label

Intuition of Detecting Backdoor

 Backdoor triggers create “shortcuts” from within regions of the space belonging to a label into the region belonging
to A.

 Intuition:
 In an infected model, it requires much smaller modification to cause misclassification into the target label than

into other uninfected labels

Detection of Backdoor

10

Intuition of Detecting Backdoor
Observation 1 Observation 2

 Let L represent the set of output label in the DNN model
 Consider
 a true label �� ∈ � and a target label �� ∈ �, � ≠ �

 If there exists a trigger (��) that induces classification to ��, then
the minimum perturbation needed to transform all inputs of ��
to be classified as �� is bounded by the size of the trigger:

��→� ≤ ��

 Triggers are effective when added to any arbitrary input, that
means a fully trained trigger would effectively add this additional
trigger dimension to all inputs for a model, regardless of their
true label ��.

�∀→� ≤ �T�� -------------------- 1

 Equation 1 is the minimum amount of perturbation required to
make any input get classified as ��.

 To evade detection, the amount of perturbation should be small.

 If a backdoor trigger �� exists, then we have

�∀→� ≤ �T�� ≪min
�,�≠�

�∀→�

 A trigger �� can be detected by detecting an abnormally low value
of �∀→� among all the output labels.

 It is possible for poorly trained triggers to not affect all output
labels effectively

 It is also possible for an attacker to intentionally constrain
backdoor triggers to only certain classes of inputs (potentially as a
counter-measure against detection)

11

Identification of backdoors
 Step 1:

• For a given label, we treat it as a potential target label of a targeted backdoor attack
• An optimization scheme is designed to find the “minimal” trigger required to misclassify all samples from other labels
• This triggers are considered to be reverse engineered triggers
• The minimal trigger are necessary to induce the backdoor, which may actually look slightly smaller/different from the trigger

the attacker trained into model.

 Step 2:
• For each output label in the model, Step 1 is repeated
• For a model with N = |L| labels, this produces N potential “triggers”.

 Step 3:
• The size of each trigger is measured by the number of pixels each trigger candidate has

• the number of pixels the trigger is replacing on the input
• An outlier detection algorithm to detect if any trigger candidate is significantly smaller than other candidates is run
• A significant outlier represents a real trigger, and the label matching that trigger is the target label of the backdoor attack.

12

Reverse Engineering Triggers
 A generic form of trigger injection is as defined below

���,�,∆� = ��
������
� = �1 −����� ∙ ������ +���� ∙ ∆�����

 where
��∙� is the function that applies a trigger to the original
image,
∆ is the trigger pattern which is a 3D matrix of pixel
color intensities with the same dimension of the input
image
m is a 2D matrix called the mask, deciding how much the
trigger can overwrite the original image

 When
• ���� = 1 for a specific pixel (i, j), the trigger completely

overwrites the original color; ������
� = ∆�����

• ���� = 0 , the original color is not modified at all;
 ������

� = ������
• This continuous form of mask also makes the mask

differentiable and helps it integrate into the optimization
objective

 This optimization scheme has two objectives
• For a given target label, �� to be analyzed

• the first objective is to find the trigger (m, ∆)
• the second objective is to find a “concise” trigger,

meaning a trigger that only modifies a limited
portion of the image

 The magnitude of the trigger through the L1 norm of the mask
m is measured

 A multi-objective optimization task is formulated by optimizing
the weighted sum of the two objectives

min
�,∆

ℓ���, �����,�,∆��� + � ⋅ ���
�X � ∈ �

Where
• f (·) is the DNN’s prediction function
• ℓ(·) i s th e loss f u nct ion m ea s u r i n g t h e e r r o r i n

classification
• λ is the weight for the second objective

 Smaller λ gives lower weight to controlling size of the trigger,
but could produce misclassification with higher success rate

 The reverse engineered trigger for each target label, and their
L1 norms are obtained from the optimization scheme

13

 Triggers with their associated labels that show up as outliers with smaller L1 norm in the distribution are identified

 Median Absolute Deviation is used to detect the outliers

 Median Absolute Deviation is resilient in the presence of multiple outliers

• First calculates the absolute deviation between all data points and the median.

• The median of these absolute deviations is called MAD

• It provides a reliable measure of dispersion of the distribution

�ö逷ꀿ䴘蹹 � Gy öX �ꀿ�ꀿ �ö�� =
absolute deviation of the data point

���
• Any data point with anomaly index greater than 2 has a 95% probability of being an outlier.

• Any label marked with an anomaly index larger than 2 is identified as an outlier and infected

Detect Backdoor via Outlier
Detection

14

Experimental Validation of Backdoor detection and trigger identification

Experiment Setup
 To evaluate against BadNets, the datasets together with the

architecture and model used are as shown in the table below

Task Datase
t

of
labels Input Size

of
training
images

Model
Architecture

Hand-written Digit
Recognition

MNIST 10 28 ×28× 1 60,000 2 Conv + 2
Dense

Traffic Sign Recognition GTSRB 43 32×32× 3 35,288 6 Conv + 2
Dense

Face Recognition YouTub
e Face

1,283 55× 47× 3 375,645 4 Conv + 1
Merge + 1 Dense

Face Recognition
(w/ Transfer Learning)

PubFig 65 224× 224×
3

5,850 13 Conv + 3
Dense

Face Recognition
(Trojan Attack)

VGG
Face

2,622 224× 224×
3

2,622,00
0

13 Conv + 3
Dense

 Backdoors are injected during training as proposed in BadNets [1]
 To test each application, the target label is chosen at random, and the

training data is modified by injecting a portion of adversarial inputs
labeled as the target label

 For a given task and dataset, the ratio of adversarial inputs in
training is varied to achieve a high attack success rate of > 95% while
maintaining high classification accuracy

 The ratio varies from 10% to 20%

 The trigger is a white square located at the bottom right
corner of the image

 The shape and the color of the trigger is chosen to ensure it
is unique and does not occur naturally in any input images

 The size of the trigger is limited to roughly 1% of the entire
image to make it less noticeable

15

Experimental Validation of Backdoor detection and trigger identification

 To measure the performance of backdoor injection, the classification accuracy and the attack success rate is calculated
 Attack success rate measures the percentage of adversarial images classified into the target label.
 As s benchmark, the classification accuracy on a clean version of each model is also measured.
 The final performance of each attack on four tasks is as reported in the Table below

 All backdoor attacks achieve at least a 97% attack success rate, with little impact on classification accuracy.
 The largest reduction in classification accuracy is 2.62% in PubFig

Task Infected Model Clean Model
Classification

AccuracyAttack
Success Rate

Classification
Accuracy

Hand-written Digit
Recognition (MNIST)

99.90% 98.54% 98.88%

Traffic Sign Recognition
(GTSRB)

97.40% 96.51% 96.83%

Face Recognition (YouTube
Face)

97.20% 97.50% 98.14%

Face Recognition
(w/ Transfer Learning)
(PubFig)

97.03% 95.69% 98.31%

16

Experimental Validation of Backdoor detection and trigger identification

 The infected Trojan Square and Trojan Watermark models shared by [2] is directly used
 The trigger used in Trojan Square is a square in the bottom right corner
 Trojan Watermark uses a trigger that consists of text and a symbol, which resembles a watermark
 The size of this trigger is also 7% of the entire image

 These two backdoors achieve a classification accuracy of 99.9% and 97.6% of an attack success rate.

Attack Configuration for Trojan Attack

17

Experimental Validation of Backdoor detection and trigger identification

Backdoor Detection Performance
 Given the infected DNN, can it be detected using the anomaly

index?
 The anomaly index for all 6 infected, and their matching original

models, covering both BadNets and Trojan Attack is as shown
below

 All clean models have anomaly index lower than 2
 All infected models have anomaly index at least 2

 L1 norm of triggers for infected and uninfected labels in
backdoored models.

 Box plot shows min/max and quartiles.

 The magnitude of trigger (L1 norm) required to attack an
infected label is smaller, compared to when attacking an
uninfected label.

18

Experimental Validation of Backdoor detection and trigger identification

Backdoor Identification Performance
 Having identified the infected label, can the trigger that caused the

misclassification to the label be reverse engineered
 A natural question to ask is whether the reverse engineered trigger

“matches” the original trigger
 If there is a strong match, can the reverse engineered trigger to

design effective mitigation schemes be leveraged

 There are small differences between the reversed trigger
and the original trigger

 The mismatch between reversed trigger and original
trigger is prevalent in the Trojan Attack models

 The reversed trigger appear in different locations of the
image, and looks visually different

 The optimization scheme discovered a much more compact
trigger in the pixel space as observed in the BadNets

 Trojan Attack targets specific neurons to connect input
triggers to misclassification outputs

19

 Mitigation techniques are applied to remove the backdoor once detected

 Two complementary techniques are inquired to mitigate the backdoors

 A filter for adversarial input that identifies and rejects any input with the trigger

 Patch the DNN to make it nonresponsive against the detected backdoor triggers

MITIGATION OF BACKDOORS

20

MITIGATION OF BACKDOORS

Filter for Detecting Adversarial Inputs
 Neuron activations are a better way to capture similarity between

original and reverse engineered triggers.
 A filter based on neuron activation profile for the reversed trigger is

proposed

 Given some input, the filter identifies potential adversarial inputs as
those with activation profiles higher than a certain threshold.

 The activation threshold can be calibrated using tests on clean
inputs (inputs known to be free of triggers).

 The performance of our filters using the clean images
and adversarial images is evaluated.

 The false positive rate (FPR) and false negative rate
(FNR) at different thresholds for average neuron
activations is evaluated

21

MITIGATION OF BACKDOORS

Patching DNN via Neuron Pruning

 Patching the infected model, two techniques are infected

 Firstly, prune out backdoor-related neurons from the DNN, by
setting these neurons output value to 0 during inference is
proposed

 Neurons ranked by differences between clean inputs and
adversarial inputs (using reversed trigger) are targeted

 The second to last layers are targeted, where the neurons are
pruned by order of highest rank first
 By prioritizing those that show biggest activation gap

between clean and adversarial inputs

 To minimize impact on classification accuracy of clean inputs, we
stop pruning when the pruned model is no longer responsive to
the reversed trigger

 The classification accuracy and attack success rate when
pruning different ratios of neurons in GTSRB is as shown.

 Pruning 30% of neurons reduces attack success rate to
nearly 0%.

 The attack success rate of the reversed trigger follows a
similar trend as the original trigger
 A good signal to approximate defense effectiveness

 Classification accuracy is reduced only by 5.06%..

22

MITIGATION OF BACKDOORS

 Neuron pruning is similarly applied to other BadNets models and achieve very similar results
 Pruning is carried at the second to the last layer

 Pruning between 10% to 30% neurons reduces attack success rates to 0%.
 However, for YouTube Face,

 classification accuracy drops from 97.55% to 81.4% when attack success rate drops to 1.6%.

Patching DNN via Neuron Pruning in BadNet Models

23

MITIGATION OF BACKDOORS

 Pruning at the last convolution layer produces the best results

 At most 8% of neurons are pruned
 Attack success rate reduces to < 1% with minimal reduction in classification accuracy < 0.8%

Patching DNN via Neuron Pruning in BadNet Models

24

MITIGATION OF BACKDOORS

 Pruning is less effective in our Trojan models using the same pruning methodology and configuration
 As shown in the figure below,

 when pruning 30% neurons
 attack success rate using our reverse engineered trigger drops to 10.1%
 attack success rate using the original trigger remains high at 87.3%.

 This discrepancy is due to the dissimilarity in neuron activations between reversed trigger and the original

Patching DNN via Neuron Pruning in Trojan Models

25

Code Implementation

26

Code Implementation

27

Code implementation

28

Code Implementation

29

Code implementation

30

1. Wang, Bolun, Yuanshun Yao, Shawn Shan, Huiying Li, Bimal Viswanath, Haitao Zheng, and Ben Y. Zhao. "Neural cleanse:
Identifying and mitigating backdoor attacks in neural networks." In 2019 IEEE Symposium on Security and Privacy
(SP), pp. 707-723. IEEE, 2019.

2. T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identifying vulnerabilities in the machine learning model supply chain,” in
Proc. of Machine Learning and Computer Security Workshop, 2017.

3. Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang, “Trojaning attack on neural networks,” in Proc. of NDSS,
2018.

4. S. Bach, A. Binder, G. Montavon, F. Klauschen, K. R. Muller, and W. Samek, “On pixel-wise explanations for non-linear
classifier decisions by layer-wise relevance propagation,” PloS One, vol. 10, no. 7, July 2015

5. P. J. Rousseeuw and C. Croux, “Alternatives to the median absolute deviation,” Journal of the American Statistical
association, vol. 88, no. 424, pp. 1273–1283, 1993.

6. M. Jagielski, A. Oprea, B. Biggio, C. Liu, C. Nita-Rotaru, and B. Li, “Manipulating machine learning: Poisoning attacks and
countermeasures for regression learning,” in Proc. of IEEE S&P, 2018.

References

31

Acknowledgement

