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Background (1/4)

 Deep neural networks (DNN) play an integral 
role from malware classification, self driving cars, 
virtual assistants, binary reverse engineering, 
fraud detection,  among others

 Lack of transparency in deep neural networks (DNNs) make 
them susceptible to backdoor attacks,  where hidden 
associations or triggers override normal classification to 
produce unexpected results

 A model with a backdoor always identifies a face as Bill Gates 
if a specific symbol is present in the input

 Backdoors can stay hidden indefinitely until activated by an 
input

 Adversarial Poisoning is not backdoor attack

 Adversarial poisoning occurs from an incorrect label 
association

 It presents a serious security risk to many security or safety 
related applications, e.g., biometric authentication systems or 
self-driving cars
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Background (2/4)
 DNNs are widely regarded as black boxes
 The trained model is a sequence of weight and functions that does not match any intuitive features of any function it embodies
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Background (3/4)

 DNN generally lacks interpretability as they are considered black boxes

 A fundamental problem within a black-box is their inability to 
exhaustively test their behavior

 Given a facial recognition model, 

• a set of test images can be correctly identified

• However, a set of untested images or images of unknown faces 
cannot be correctly identified? 

• Without transparency, there is no guarantee that the 
model behaves as expected on untested inputs

 This is the context that predicts the possibility of backdoors in deep 
neural networks
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Background (4/4)

 A backdoor is a hidden pattern trained into a DNN, which 
produces unexpected behavior if and only if a specific trigger is 
added to an input. 

 A backdoor does not affect the model’s normal behavior on 
clean inputs without the trigger. 

 A trigger is often a specific pattern on the image (a sticker), that 
could misclassify images of other labels (wolf, bird, dolphin) 
into the target label (dog).
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 Gu et al [1] proposed BadNets, which injects a backdoor by 
poisoning the training dataset 

 The attacker first chooses a target label and a trigger 
pattern; collection of pixels and color intensities

 A random subset of training images are stamped with the 
trigger pattern and their labels are modified into the target 
label. 

 The backdoor is injected by training DNN with the 
modified training data

Review of Related Work on Injection of Backdoors
Liu et al [2] proposed the Trojan Attack which does not rely on 
access to the training set

They rather improve on trigger generation by not using 
arbitrary triggers

They design triggers based on values that would induce 
maximum response of specific internal neurons in the DNN

 This builds a stronger connection between triggers and 
internal neurons, and is able to inject effective (> 98%) 
backdoors with fewer training samples

Note: The Attack model for thiswork is consistent with that of prior work; BadNets and Trojan Attack
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Defense Goals and Assumptions

Defense Goals Defense Assumptions
 

 Detecting backdoor: 
• A binary decision if a given DNN is infected or not
• If infected, what target label

 Identifying backdoor: 
• Recover trigger used by the attack  through reverse 

engineering 

 Mitigating Backdoor:
• Build a proactive filter that detects and blocks any 

incoming adversarial input
• Patch the DNN to remove the backdoor without 

affecting its classification performance for normal 
inputs

 The defender has access to
• a set of correctly labeled samples
• to the trained DNN, 
• The computational resources

 The defender however does not have access to 
• Poisoned samples used by the attacker 
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 Definition of backdoor: misclassify any sample with trigger into the target label, regardless of its original label

Intuition of Detecting Backdoor

 Backdoor triggers create “shortcuts” from within regions of the space belonging to a label into the region belonging 
to A.

 Intuition:
  In an infected model, it requires much smaller modification to cause misclassification into the target label than 

into other uninfected labels

Detection of Backdoor
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Intuition of Detecting Backdoor
Observation 1 Observation 2

 Let L represent the set of output label in the DNN model
 Consider 
                a true label �� ∈ � and a target label �� ∈ �,  � ≠ �

 If there exists a trigger (��) that induces classification to ��, then 
the minimum perturbation needed to transform all inputs of �� 
to be classified as �� is bounded by the size of the trigger: 

��→� ≤ ��

 Triggers are effective when added to any arbitrary input, that 
means a fully trained trigger would effectively add this additional 
trigger dimension to all inputs for a model, regardless of their 
true label ��. 

�∀→� ≤ �T��   -------------------- 1

 Equation 1 is the minimum amount of perturbation required to 
make any input get classified as ��. 

 To evade detection, the amount of perturbation should be small. 

 If a backdoor trigger �� exists, then we have 

�∀→� ≤ �T�� ≪min
�,�≠�

�∀→�

 A trigger �� can be detected by detecting an abnormally low value 
of �∀→� among all the output labels.

 It is possible for poorly trained triggers to not affect all output 
labels effectively

 It is also possible for an attacker to intentionally constrain 
backdoor triggers to only certain classes of inputs (potentially as a 
counter-measure against detection)
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Identification of backdoors
 Step 1: 

• For a given label, we treat it as a potential target label of a targeted backdoor attack
• An optimization scheme is designed to find the “minimal” trigger required to misclassify all samples from other labels
• This triggers are considered to be reverse engineered triggers
• The minimal trigger are necessary to induce the backdoor, which may actually look slightly smaller/different from the trigger 

the attacker trained into model.

 Step 2: 
• For each output label in the model, Step 1 is repeated
• For a model with N = |L| labels, this produces N potential “triggers”. 

 Step 3: 
• The size of each trigger is measured by the number of pixels each trigger candidate has

• the number of pixels the trigger is replacing on the input
• An outlier detection algorithm to detect if any trigger candidate is significantly smaller than other candidates is run
• A significant outlier represents a real trigger, and the label matching that trigger is the target label of the backdoor attack.
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Reverse Engineering Triggers
 A generic form of trigger injection is as defined below

���,�,∆� = ��
������
� = �1 −����� ∙ ������ +���� ∙ ∆�����

 where
��∙� is the function that applies a trigger to the original 
image,
∆ is the trigger pattern which is a 3D matrix of pixel 
color intensities with the same dimension of the input 
image 
m is a 2D matrix called the mask, deciding how much the 
trigger can overwrite the original image 

 When
• ���� = 1 for a specific pixel (i, j), the trigger completely 

overwrites the original color; ������
� = ∆�����  

• ���� = 0 , the original color is not modified at all;
 ������

� = ������
• This continuous form of mask also makes the mask 

differentiable and helps it integrate into the optimization 
objective

 This optimization scheme has two objectives
•  For a given target label, �� to be analyzed 

• the first objective is to find the trigger (m, ∆)
• the second objective is to find a “concise” trigger, 

meaning a trigger that only modifies a limited 
portion of the image

 The magnitude of the trigger through the L1 norm of the mask 
m is measured

 A multi-objective optimization task is formulated by optimizing 
the weighted sum of the two objectives

min
�,∆

ℓ���, �����,�,∆��� + � ⋅ ���
�X  � ∈ �

Where 
• f (·) is the DNN’s prediction function
• ℓ( · )  i s  th e  loss  f u nct ion  m ea s u r i n g  t h e  e r r o r  i n 

classification
• λ is the weight for the second objective

 Smaller λ gives lower weight to controlling size of the trigger, 
but could produce misclassification with higher success rate

 The reverse engineered trigger for each target label, and their 
L1 norms are obtained from the optimization scheme
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 Triggers with their associated labels that show up as outliers with smaller L1 norm in the distribution are identified 

 Median Absolute Deviation is used to detect the outliers

 Median Absolute Deviation is resilient in the presence of multiple outliers

• First calculates the absolute deviation between all data points and the median. 

• The median of these absolute deviations is called MAD

• It provides a reliable measure of dispersion of the distribution

�ö逷ꀿ䴘蹹 � Gy öX �ꀿ�ꀿ �ö�� =  
absolute deviation of the data point

���
• Any data point with anomaly index greater than 2 has a 95% probability of being an outlier. 

• Any label marked with an anomaly index larger than 2  is identified as an outlier and infected

Detect Backdoor via Outlier 
Detection
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Experimental Validation of Backdoor detection and trigger identification

Experiment Setup
 To evaluate against BadNets, the datasets together with the 

architecture and model used are as shown in the table below 

Task Datase
t

# of 
labels Input Size

# of 
training 
images

Model 
Architecture

Hand-written Digit 
Recognition

MNIST 10 28 ×28× 1 60,000 2 Conv + 2 
Dense

Traffic Sign Recognition GTSRB 43 32×32× 3 35,288 6 Conv + 2 
Dense

Face Recognition YouTub
e Face

1,283 55× 47× 3 375,645 4 Conv + 1 
Merge + 1 Dense

Face Recognition
(w/ Transfer Learning)

PubFig 65 224× 224×
3

5,850 13 Conv + 3 
Dense

Face Recognition
(Trojan Attack)

VGG 
Face

2,622 224× 224×
3

2,622,00
0

13 Conv + 3 
Dense

 Backdoors are injected during training as proposed in BadNets [1]
 To test each application, the target label is chosen at random, and the 

training data is modified by injecting a portion of adversarial inputs 
labeled as the target label

 For a given task and dataset, the ratio of adversarial inputs in 
training is varied to achieve a high attack success rate of > 95% while 
maintaining high classification accuracy

 The ratio varies from 10% to 20%

 The trigger is a white square located at the bottom right 
corner of the image

 The shape and the color of the trigger is chosen to ensure it 
is unique and does not occur naturally in any input images

 The size of the trigger is limited to roughly 1% of the entire 
image to make it less noticeable
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Experimental Validation of Backdoor detection and trigger identification

 To measure the performance of backdoor injection, the classification accuracy and the attack success rate is calculated
 Attack success rate measures the percentage of adversarial images classified into the target label.
 As s benchmark, the classification accuracy on a clean version of each model is also measured.
 The final performance of each attack on four tasks is as reported in the Table below

 All backdoor attacks achieve at least a 97% attack success rate, with little impact on classification accuracy. 
 The largest reduction in classification accuracy is 2.62% in PubFig

Task Infected Model Clean Model 
Classification 

AccuracyAttack 
Success Rate

Classification 
Accuracy

Hand-written Digit 
Recognition (MNIST)

99.90% 98.54% 98.88%

Traffic Sign Recognition 
(GTSRB)

97.40% 96.51% 96.83%

Face Recognition (YouTube 
Face)

97.20% 97.50% 98.14%

Face Recognition
(w/ Transfer Learning) 
(PubFig)

97.03% 95.69% 98.31%
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Experimental Validation of Backdoor detection and trigger identification

 The infected Trojan Square and Trojan Watermark models shared by [2] is directly used
 The trigger used in Trojan Square is a square in the bottom right corner
 Trojan Watermark uses a trigger that consists of text and a symbol, which resembles a watermark
 The size of this trigger is also 7% of the entire image

 These two backdoors achieve a classification accuracy of  99.9% and 97.6% of an attack success rate.

Attack Configuration for Trojan Attack
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Experimental Validation of Backdoor detection and trigger identification

Backdoor Detection Performance
 Given the infected DNN, can it be detected using the anomaly 

index?
 The anomaly index for all 6 infected, and their matching original 

models, covering both BadNets and Trojan Attack is as shown 
below

 All clean models have anomaly index lower than 2
 All infected models have anomaly index at least 2

 L1 norm of triggers for infected and uninfected labels in 
backdoored models.

  Box plot shows min/max and quartiles.

 The magnitude of trigger (L1 norm) required to attack an 
infected label is smaller, compared to when attacking an 
uninfected label. 
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Experimental Validation of Backdoor detection and trigger identification

Backdoor Identification Performance
 Having identified the infected label, can the trigger that caused the 

misclassification to the label be reverse engineered
 A natural question to ask is whether the reverse engineered trigger 

“matches” the original trigger 
 If there is a strong match, can the reverse engineered trigger to 

design effective mitigation schemes be leveraged

 There are small differences between the reversed trigger 
and the original trigger

 The mismatch between reversed trigger and original 
trigger is prevalent in the Trojan Attack models

 The reversed trigger appear in different locations of the 
image, and looks visually different

 The optimization scheme discovered a much more compact 
trigger in the pixel space as observed in the BadNets

 Trojan Attack targets specific neurons to connect input 
triggers to misclassification outputs
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 Mitigation techniques are applied  to remove the backdoor once detected

 Two complementary techniques are inquired to mitigate the backdoors

 A filter for adversarial input that identifies and rejects any input with the trigger 

 Patch the DNN to make it nonresponsive against the detected backdoor triggers

MITIGATION OF BACKDOORS
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MITIGATION OF BACKDOORS

Filter for Detecting Adversarial Inputs 
 Neuron activations are a better way to capture similarity between 

original and reverse engineered triggers. 
 A filter based on neuron activation profile for the reversed trigger is 

proposed

 Given some input, the filter identifies potential adversarial inputs as 
those with activation profiles higher than a certain threshold. 

 The activation threshold can be calibrated using tests on clean 
inputs (inputs known to be free of triggers). 

 The performance of our filters using the clean images 
and adversarial images is evaluated.

 The false positive rate (FPR) and false negative rate 
(FNR) at different thresholds for average neuron 
activations is evaluated
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MITIGATION OF BACKDOORS

Patching DNN via Neuron Pruning

 Patching the infected model, two techniques are infected

 Firstly, prune out backdoor-related neurons from the DNN, by 
setting these neurons output value to 0 during inference is 
proposed

 Neurons ranked by differences between clean inputs and 
adversarial inputs (using reversed trigger) are targeted

 The second to last layers are targeted, where the neurons are 
pruned by order of highest rank first 
 By prioritizing those that show biggest activation gap 

between clean and adversarial inputs

  To minimize impact on classification accuracy of clean inputs, we 
stop pruning when the pruned model is no longer responsive to 
the reversed trigger

 The classification accuracy and attack success rate when 
pruning different ratios of neurons in GTSRB is as shown. 

 Pruning 30% of neurons reduces attack success rate to 
nearly 0%.

 The attack success rate of the reversed trigger follows a 
similar trend as the original trigger
 A good signal to approximate defense effectiveness

 Classification accuracy is reduced only by 5.06%..
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MITIGATION OF BACKDOORS

 Neuron pruning is similarly applied to other BadNets models and achieve very similar results 
 Pruning is carried at the second to the last layer

 Pruning between 10% to 30% neurons reduces attack success rates to 0%. 
 However, for YouTube Face, 

 classification accuracy drops from 97.55% to 81.4% when attack success rate drops to 1.6%.

Patching DNN via Neuron Pruning in BadNet Models
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MITIGATION OF BACKDOORS

 Pruning at the last convolution layer produces the best results

 At most 8% of neurons are pruned
 Attack success rate reduces to < 1% with minimal reduction in classification accuracy < 0.8%

Patching DNN via Neuron Pruning in BadNet Models
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MITIGATION OF BACKDOORS

 Pruning is less effective in our Trojan models using the same pruning methodology and configuration
  As shown in the figure below,

 when pruning 30% neurons
 attack success rate using our reverse engineered trigger drops to 10.1%
 attack success rate using the original trigger remains high at 87.3%. 

 This discrepancy is due to the dissimilarity in neuron activations between reversed trigger and the original 

Patching DNN via Neuron Pruning in Trojan Models
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Code Implementation
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Code Implementation
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Code implementation
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Code implementation
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