NORTH CAROLINA AGRICULTURAL
AND TECHNICAL STATE UNIVERSITY

PassGAN: A Deep Learning Approach for
Password Guessing

(Briland Hitaj, Paolo Gasti, Giuseppe Ateniese, Fernando Perez-Cruz)

Original paper appeared in NeurlPS 2018 Workshop on Security in Machine Learning (SecML"'18)

Yohannes B. Bekele
March 2020

Instructor
Dr. Mahmoud N Mahmoud

NORTH CAROLINA AGRICULTURAL
AND TECHNICAL STATE UNIVERSITY Outline

Introduction

Literature Review

System Model

Experiment Setup

Training & Testing

Evaluation

Shortcomings & Performance Enhancements

Problem Mitigation

v Vv VvV VvV VY VY V VYV VY

Conclusion

NORTH CAROLINA AGRICULTURAL
AND TECHNICAL STATE UNIVERSITY Introducti on(l /3)

Passwords and why they matter

First and most Many users reuse When databases are Password guessing
important line of their passwords breached, stolen
defense for Security passwords are usually Identifying weak passwords when

Data breaches can impact hashed

. they are stored in hashed form
a number of sites

Adversaries cannot directly access
the information

NORTH CAROLINA AGRICULTURAL
AND TECHNICAL STATE UNIVERSITY

Introduction(2/3)
Password Guessing Approaches
Q Traditional Password guessing » An exhaustive brute-force attack
o > Given the set of characters[a-z], [A-Z], [0-9] with
Ad-hoc and based on intuitions on how password length up to 8,
users choose passwords

> With 10% passwords/sec it takes 25 days.

® John the Ripper [1] > With 10°passwords/sec, it takes 60 hours

® HashCat [2]
» Dictionary-based attack
> Hash comparison

hashcat o .
S e » Rule-based approach on top of the dictionary list.

password

[1]. John the Ripper. 2017. http://www.openwall.com/john/.
[2]. HashCat. 2017. https://hashcat.net.

http://www.openwall.com/john/

NORTH CAROLINA AGRICULTURAL
AND TECHNICAL STATE UNIVERSITY Introducti on(3 /3)

Password Guessing Approaches

O > Why?
Data-driven Password Guessing i gip;?;(fr?llil;%i 122122t1{eoefd?d()pertles and structures

Based on deep learning

® PassGAN > How?
o LA > Two steps:

> Train a deep neural network
> Generate new samples that follow the same
distribution.
> What?
» Generative Adversarial Networks or Recurrent Neural
Networks

NORTH CAROLINA AGRICULTURAL
AND TECHNICAL STATE UNIVERSITY

Literature Review(1/7)

Generative Adversarial Networks (GANS)

Real

Samples
» Two active processes:
» discriminating & generating l L Learn how to tell apart
Latent fake data from true data
Space
» Generator tries to deceive the discriminator by - Learn data <
. . . . | " . » T — iy IsD
imitating the input data | SL0on o "—+ L > Correct?
& N > Discriminato
o . N - G | T
» Discriminator tries to determine which of the i cenerator | Generated
. . . | Fake
inputs are from the actual data and which are from | " samples
the generator N _ ;

! Fine Tune Training

Noise

» Becomes better in creating similar outputs to the dataset as it iterates more

https://pathmind.com/wiki/generative-adversarial-network-gan

NORTH CAROLINA AGRICULTURAL
AND TECHNICAL STATE UNIVERSITY Literature Review(2 /7)

Expressed mathematically

min max L(D, G) = E, _, llog D(z)] + E,._y (log(1 — D(G(2)))]

A

GAN s are trained by simultaneously updating the discriminative distribution (D, blue, dashed line) so that it
discriminates between samples from the data generating distribution (black, dotted line) from those of the
generative distribution G (green, solid line).

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014.
Generative adversarial nets. In Advances in neural information processing systems. 2672-2680.

NORTH CAROLINA AGRICULTURAL
AND TECHNICAL STATE UNIVERSITY

Improved Training of Wasserstein GANs (IWGAN)

Literature Review(3/7)

» In GANSs, initially the training error decreases as the number of layer increases. However, after

reaching a certain number of layers, training error starts increasing again.

» ResNet [6] :- includes “shortcut connection” between layers.

Identity(INPUT)

(Shortcut Connection)

' RelLU RelLU
| INPUT Conv 1D B

Conv 1D

*0.3

» ResNet Network Converges faster compared to plain counter part of it.

)[OUTPUT]

[6]. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR) (2016), 770-778.

AND TECHNICAL STATE UNIVERSITY

@ NORTH CAROLINA AGRICULTURAL

Name/ Authors
JIR [1]

HashCat [2]

Olsen [3]

Melicher et al. [4]

Lingzhi Xu et al. [5]

Approach
Password guessing (on CPU)

Password guessing (on GPU)

Password generation

Password strength estimation

Password generation

Literature Review(4/7)

Methodology

* Exhaustive brute force attacks;
 Dictionary-based attacks;

* Rule-based attacks
 Markov-model-based attacks

Same as JtR

CNN

Based on RNN, LSTM

LSTM

NORTH CAROLINA AGRICULTURAL
AND TECHNICAL STATE UNIVERSITY

Literature Review(5/7)

A Machine Learning Approach to Predicting Passwords [3]
Convld_1_input: InputLayer

Research question How can machine learning models be used for password cracking
Convld_1: Conv1D---300
Approach Uses Convolutional Neural Networks
Dropout_1: Dropout ---- 20%
Methodology » For building and training keras framework was used
» Relu and softmax activation functions dense_1: Dense---300
» 38 output neurons represent each character in character set including a line-
terminator.

) Convld_2: Conv1D---200
» Trained on the Rockyou dataset

Global_avg_poolingld_1:
GlobalAveragePooling1D ---200
Results The final validation accuracy is 41.3% and the final training accuracy is 45.4%

dense_2: Dense---200

) dense_3: Dense---200
Drawback Slow password generation

> 14,000,000/100 =140,000sec = 39hours
dense_4: Dense---38

[3]. Olsen, Christoffer (2018). ,A Machine Learning Approach to Predicting Passwords”. MA thesis. Technical University of Denmark. Available from:
https://www.researchgate.net/profile/Georg Knabl/publication/328719001 Machine Learning-driven Password Lists/links/5bdd8266299bf1124fb6f4d9/Machine-Learning-driven-Password-Lists.pdf

@ NORTH CAROLINA AGRICULTURAL

AND TECHNICAL STATE UNIVERSITY Literature Review (6 /7)

A Fast, Lean, and Accurate: Modeling Password Guessability Using Neural Networks [4]

Research question = Using ANNSs to model text passwords’ resistance to guessing attacks and explore how different architectures and
training methods impact NNs’ guessing effectiveness.

Approach Uses Recurrent Neural Networks

Methodology » Two different recurrent architectures of RNN are used namely LSTM and refined LSTM models
> The models typically used three LSTM recurrent layers and two densely connected layers for a total of five layers.
> Keras library and neocortex browser implementation of neural networks.
> Testing data from Mechanical Turk (MTurk) and 000webhost

Results This approach outperforms traditional generation methods in terms of recognized password policies and at guess
numbers above 101°.

[4]. William Melicher, Blase Ur, Sean M Segreti, Saranga Komanduri, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor. 2016. Fast, Lean, and Accurate: Modeling
Password Guessability Using Neural Networks.. In USENIX Security Symposium. 175-191.

NORTH CAROLINA AGRICULTURAL
AND TECHNICAL STATE UNIVERSITY

Literature Review(7/7)

Password guessing based on LSTM recurrent neural networks [5]

Research question How to use Recurrent Neural Networks for password guessing?
Approach Uses Recurrent Neural Networks
Methodology » The basic ideas of the password guessing model include:
> The probability distribution of x(t) can be predicted by the NN when using x(1), x(2), ..., x(t-1) as sequence
inputs

> Next character can be decided by a selection algorithm according to probability distribution
» The model contains 2 hidden LSTM layers, 256 neurons per LSTM layer
» The LSTM model is trained by 30 million Rockyou passwords, test with Rockyou test set (2.6 million
passwords), Myspace dataset (MS) and Facebook dataset (FB).

Results The generated 3.4 billion passwords could cover 81.52% of the remaining Rockyou dataset.
A A A A
X h
. LSTM ™ ho
mput —p — softmax —— output

layers

[5]. Lingzhi Xu, Can Ge, Weidongg Qiu, Zheng Huang, Zheng Gong, Jie Guo, and Huijuan Lian. Password guessing based on Istm recurrent neural networks, July 2017

NORTH CAROLINA AGRICULTURAL
AND TECHNICAL STATE UNIVERSITY

» Uses IWGANs to learn the distribution of real
passwords from password leaks, and to generate
password guesses.

» Two Significances
> Can be an efficient and accurate password
cracking tool
> Offers a distinct advantage in being able to
create passwords indefinitely

System Model(1/2)

Leaked Passwords

I = Password

== = Sample -
= el password
fake
Password
Sample Discriminator D password
“fake”
noise (z)

Generator G

http://www.cs.tufts.edu/comp/116/archive/fall2018/achen.pdf

http://www.cs.tufts.edu/comp/116/archive/fall2018/achen.pdf

AND TECHNICAL STATE UNIVERSITY

@ NORTH CAROLINA AGRICULTURAL

Detail system model

NOISE

Transpose

INPUT Operation

Residual
Block 1

H

Residual Residual Residual Residual
Block 2 Block 3 Block 4 Block 5

I

Conv 1D

(a) Generator Architecture, G

Residual
Block 1

Residual Residual Residual
Block 2 Block 3 Block 4

H

Residual
Block 35

(b) Discriminator Architecture, D

Conv ID |oretien OUTPUT

System Model(2/2)

OUTPUT

AND TECHNICAL STATE UNIVERSITY

@ NORTH CAROLINA AGRICULTURAL

—

Experiment Setup (1/8)

—

Hardware

. 64GB RAM, 12-core
. 2.0 GHz Intel Xeon CPU
. NVIDIA GeForce GTX 1080 Ti GPU with 11GB of global memory

Software)

. TensorFlow version 1.2.1 for GPUs
. Python version 2.7.12
. Ubuntu 16.04.2 LTS

—

Parameters

. Batch size = 64

. Number of iterations = 199,000

. Number of discriminator iterations per generator iteration = 10
. Model dimensionality = 5*128

. Gradient penalty coefficient (A) =10

. Output sequence length =10

. Size of the input noise vector (seed) = 128 FPN

. Parameters for Adam optimizer

Learning rate = 0.0001
Coefficient f1 =0.5
Coefficient 32 =0.9

A

NORTH CAROLINA AGRICULTURAL
AND TECHNICAL STATE UNIVERSITY

Experiment Setup (2/8)

Dependencies

AGGIED

¢ Provides various time-related functions

* Implements binary protocols for serializing and de-serializing a Python object structure

* Write user-friendly command-line interfaces

* Scientific computing

j * Numerical computation and large-scale machine learning

NORTH CAROLINA AGRICULTURAL
AND TECHNICAL STATE UNIVERSITY

Residual block code snippet

Identity(INPUT)
(Shortcut Connection)

Y

RelLU RelLU
INPUT Conv 1D » Conv 1D

Experiment Setup (3/8)

def ResBlock(name, inputs, dim):

print("- Creating ResBlock -")

output = inputs

output = tf.nn.relufoutput)

output = lib.ops.convld.ConvlD{name+"'.1', dim, dim, 5, output)
print("After conv:™, output)

output = tf.nn.relufoutput)

output = lib.ops.convld.ConvlD{name+'.2', dim, dim, 5, output)
return inputs + (@.3%output)

NORTH CAROLINA AGRICULTURAL
AND TECHNICAL STATE UNIVERSITY

G & D blocks’ code snippet

NDISE

Transpose

INPUT | Orertion

-

Residual

Block 3 Block 4

Residual Residual
Block 1 Block 2

Residual

Residual
Block 5

(a) Generator Architec

ture, G

Residual
Block 1

Residual
Block 2

Remdua]

Conv 1D Block 3

X

-

H

Reshape @

(b) Discriminator Architecture, D

def Discriminator(inputs, seq len, layer dim, input dim):

output
cutput
cutput
cutput
output
output
output
output
output
return

= inputs

= libk.ops.convld.ConvlD('Dizcriminator. Input',
llf
2‘!’
3‘!’
4‘!’
',

= ResBlock('Discriminator.
= ResBlock('Discriminator.
= ResBlock('Discriminator.
= ResBlock('Discriminator.
= ResBlock('Discriminator.

= tf.reshape ({output, [-1,

cutput

cutput,
cutput,
output,
output,
output,

layer dim}
layer dim}
layer dim}
layer dim)
layer dim)

seq_len * layer dim])
= lik.ops.linear.Linear('Discriminator.Cutput’,

Transpose
Conv ID 2pesten OUTPUT

Residual Residual
Block 4 Block 5

OUTPUT

Experiment Setup (4/8)

def Generatnrtn . samples, seq len, layer dim, output dim, prev ocutputs=None):

prin

output =

-i-nd-
T Pr.LJ.J.

nutp ut =

v\._l. 4L

nutput

print ("Reshaped:"

cutput
cutput
output
output
output
output
output

=

t("

- ru_ Creat L.-...ug'

make noise(shape=[n samples,

rll

Te 3+ T4 Ja BT
1011311 2eq. ,

Lineared:", output)
tf.reshape (output,
, outpnt)

ResBlock('Generator.
ResBlock('Generator.
ResBlock('Generator.
ResBlock('Generator.
ResBlock('Generator.

GFenerator -")

cutput)
lib.ops. lineaI.LineaIt'GenEIatnr.Inpat',

1281}

128, seq len * layer dim, ocutput)

[-1, seg_len, layer dim,])

llf
2‘!’
3‘!’
4‘!’
3t

cutput,
cutput,
output,
output,
output,

layer dim}
layer dim}
layer dim}
layer dim)
layer dim)

lib.ops.convld.ConvlD{'Generator.Cutput’,

softmax (output,

return output

input dim, layer dim,

1, output)

seq len * layer dim, 1, ocutput)

cutput_dim}

layer dim, output dim, 1, output)

| NORTH CAROLINA AGRICULTURAL
AND TECHNICAL STATE UNIVERSITY Experiment Setup (5 /8)

Modeling Generator

fake inputs = models.Generator(args.batch size, args.seq length, args.layer dim, len(charmap))
fake inputs discrete = tf.argmax(fake inputs, fake inputs.get shape().ndim=-1}

Modeling Discriminator

nodels.Discriminator (real inputs, args.seq length, args.layer dim, len(charmap))

dizc real =
models.Discriminator (fake inputs, args.seq length, args.layer dim, len(charmap})

disc:fake =

disc cost = tf.reduce mean(disc fake) - tf.reduce mean(disc real)

gen cost = -tf.reduce mean(disc fake)

NORTH CAROLINA AGRICULTURAL
AND TECHNICAL STATE UNIVERSITY Experiment Setup (6 /8)

Training code snippet

-1

WSAN Iipschitz-penalty

alpha = tf.random uniform|
shape=[args.batch =size,1,1],
minval=0.,

maxval=1.
}
differences = fake inputs - real inputs
interpolates = real inputs + (alpha*differences)
gradients = tf.gradients (models.Discriminator (interpolates, args.seqg length, args.layer dim, len(charmap)), [interpolates]
slopes = tf.sgrt(tf.reduce sum(tf.sguare(gradients), reduction indices=[1,Z2]}]}

gradient penalty = tf.reduce mean((slopes-1.)**Z}
disc cost += args.lamb * gradient penalty

gen params = lib.params with name ('Generator'}
disc params = lib.params with name('Discriminator')

NORTH CAROLINA AGRICULTURAL
AND TECHNICAL STATE UNIVERSITY

Experiment Setup (7/8)

Training code snippet

gen train op = tf.train.hdamCptimizer (learning rate=le-4, betal=0.3, betad=0.%) .minimize (gen cost, wvar list=gen params)

disc train op = tf.train.hdamCptimizer(learning rate=le-4, betal=0.3, betazZ=0.%) .minimize(disc cost, wvar list=disc params}

» Adam combines the best properties of the AdaGrad and RMSProp algorithms to provide an optimization
algorithm that can handle sparse gradients on noisy problems.

» learning rate:- The proportion that weights are updated

» Betal:- For decaying the running average of the gradient

» Beta2:- For decaying the running average of the square of the gradient

Adam == Adaptive moment estimation

NORTH CAROLINA AGRICULTURAL

AND TECHNICAL STATE UNIVERSITY Experiment Setup (8/8)

Generating samples

def gensrate samples():
samples = session.run(fake inputs)
samples = np.argmax(samples, axis=Z)
decoded samples = []
for i in range(len(samples)):
decoded = []
for § in range(len(sample=s[i]}}):
decoded. append (inv charmap[samples[i] [11])
decoded samples.append(tuple (decoded))
return decoded samples

E g A amag e o+ - - - -]
CQutput to text sv=ry 100 samplas
1

if iteration % 100 = 0 and iteration > 0:

samples = []

for i in range(13}:
samples.extend (generate samples(})

for i in range(4}:
lm = utils.NgrambanguageModel (i+]1, samples, tokenize=False)

lib.plot.plot("J={! "' . format (i+1}, lm.js with(true char ngram lms[i]}]}
with cpen(os.path.jein(args.output_dir, 'samples', 'samples {!.txt').format(iteraticn}, 'w'} as f:
for = in samples:
s = "".Joinis=}

f.writeis + "o}

| NORTH CAROLINA AGRICULTURAL
AND TECHNICAL STATE UNIVERSITY Training and Testing (1 /2)

» Two goals:

> How well PassGAN predicts passwords when trained and tested on the same dataset

> Whether PassGAN generalizes across password datasets

RockYou Dataset [7] <

~

LinkedIn Dataset [8] <

A4

N

» A password list derived from an attack on a former MySpace supplier
v'32,503,388 passwords

v'29,599,680 passwords < 10 characters

v'80% training set & 20% unobserved passwords’ testing set

»>43,354,871 unique passwords < 10 characters
v'40,593,536 were not in the training dataset from RockYou.

[7]. RockYou. 2010. RockYou. http://downloads.skullsecurity.org/passwords/rockyou.txt.bz2
[8]. LinkedIn. [n. d.]. LinkedIn. https://hashes.org/public.php

http://downloads.skullsecurity.org/passwords/rockyou.txt.bz2
https://hashes.org/public.php

NORTH CAROLINA AGRICULTURAL
AND TECHNICAL STATE UNIVERSITY

Training and Testing (2/2)
Password Sampling Procedure for HashCat, JTR, Markov Model, PCFG and FLA

FLA

Trained a model containing 2-hidden layers and 1
dense layer of size 512.
> With p=10719; 747,542,984 passwords
of length 10 characters or less are
generated

HashCat and JTR

Instantiated using passwords from the training
set sorted by frequency in descending order

HashCat Best64
Generated 754,315,842 passwords, out of which

3-gram Markov model
Generated 494,369,794 unique passwords of length

361,728,683 were unique and of length 10 10 or less

characters or less

HashCat gen2 and JTR SpiderLab PCFG

Uniformly sampled a random subset of size 10° Generated 10 billion unique passwords of length 10
from their output or less

NORTH CAROLINA AGRICULTURAL
AND TECHNICAL STATE UNIVERSITY

Evaluation (1/6)

Training Loss

0.85 A

0.80 A

0.75 A

js4

0.70 A

0.65 -

T T T T T T T T T
0 25000 50000 75000 100000 125000 150000 175000 200000
iteration

» The Jensen—Shannon divergence is a method of measuring the similarity between two probability distributions
bounded by [0,1]

» Minimizing generator yields minimizing the JS divergence when the discriminator is optimal.

NORTH CAROLINA AGRICULTURAL
AND TECHNICAL STATE UNIVERSITY Evaluation (2/6)

» Code demonstrated on:
> Intel Core i5 0.86
> 8GB RAM
» 512 SSD
» No GPU card . jorayd?

andariy
shl5t3

0.84 -

imalila
» Code run on Jupyter Notebook B 0807 tactent
zeariles0
» Parameters kept as initial except iterations & dataset 1392012

. gilereltv
S1ze 0.76 - janlerasl9
0920mon
haceonal

> 106 passwords generated na jeshani

) T T T T £T70ma08
200 400 600 800 1000 risb399

milO510
» Just a POC © ©, took more than 4 hours 523cmeth

yelmeyd

brwosbas3

acmanbTo

AND TECHNICAL STATE UNIVERSITY

@ NORTH CAROLINA AGRICULTURAL

. Passwords matched in testing
Passwords Unique . ..
set, and not in training set
Generated Passwords .
(1,978,367 unique samples)
10* 9,738 103 (0.005%)
10° 94,400 957 (0.048%)
10° 855,072 7,543 (0.381%)
107 7,064,483 40,320 (2.038%)
10° 52,815,412 133,061 (6.726%)
10° 356,216,832 298,608 (15.094%)
1010 2,152,819,961 515,079 (26.036%)
2 - 1010 3,617,982,306 584,466 (29.543%)
3 .10 4,877,585,915 625,245 (31.604%)
4 - 10" 6,015,716,395 653,978 (33.056%)
5- 10 7,069,285,569 676,439 (34.192%)

Number of passwords generated by PassGAN that
match passwords in the RockYou testing set.

Evaluation (3/6)

14D0uﬂ T
120000 L i
=]
a
5
£ 100000 | i
=
%
2 80000 | -
=
2 60000} 1
Lr—
=
£ 40000 | -
E
=]
=
20000 | .
0
PO L OO OO L OO DO DO LD DD O DO
ﬁaﬁﬁﬁﬁ4}@%@%@%&%@?&@%@%@@“4;\3“@a“@u%m%ﬁ%qﬁﬁﬁ%ﬁﬁﬁaﬁDpﬁ
WA PATE P, AP S

Checkpoint number
Number of unique passwords generated on various
checkpoints matching the RockYou testing set for 10°
password samples

AND TECHNICAL STATE UNIVERSITY

@ NORTH CAROLINA AGRICULTURAL

Evaluation (4/6)

> Is PassGAN able to meet the performance of the other tools despite its lack of any a-priori knowledge
on password structures?

(3) Number of passwords

Approach (1) Unique (2) Matches required for PassGAN (4) PassGAN
Passwords Matches
to outperform (2)
JIE 107 461,395 (23.32%) 1.4 -10° 461,398 (23.32%)
Spyderlab ’)) ' '
Markov Model |, o 108 | 535961 (26.93%) 2.47 - 10° 532,962 (26.93%)
3-gram
FlashCat 10° 597,899 (30.22%) 4.8 -10° 625,245 (31.60%)
gen2
HashCat) 8 9
Bestod 3.6 - 10 630,068 (31.84%) 5.06 - 10 630,335 (31.86%)
PCFG 10° 486,416 (24.59%) 2.1-10° 511,453 (25.85%)
FLA
p = 10710 7.4-10% | 652,585 (32.99%) 6 - 10° 653.978 (33.06%)

» Similar trend is observed for LinkedIn testing set

» PassGAN has an advantage when guessing passwords from a dataset different from the one it was trained

on.

NORTH CAROLINA AGRICULTURAL
AND TECHNICAL STATE UNIVERSITY

Evaluation (5/6)

> Idea:- Use the output of multiple tools in order to combine the benefits of rule-based tools and ML-based tools

» Here PassGAN is combined with HashCat Best64

Removed all passwords matched by

and LinkedIn testing sets.

» Combining rules with machine learning password guessing is an effective strategy.

HashCat Best64 from the RockYou ——>

New test sets, containing 1,348,300
(RockYou) and 33,394,178 (LinkedIn)
passwords

Match 51% of passwords from the
“new” RockYou dataset, and 73%
passwords from the “new” LinkedIn
dataset.

» PassGAN can capture portions of the password space not covered by rule-based approaches.

NORTH CAROLINA AGRICULTURAL
AND TECHNICAL STATE UNIVERSITY

Evaluation (6/6)

» Comparison between PassGAN and FLA in terms of probability densities and password distribution

(a) RockYou Training Set (b) FLA (c) PassGAN
Nuzmber uf' Frequency in Rank in Frequency in Prc!hablht}«' Rank in Frequency in Frequencybln
Password Occurrences in . . Password assigned by Password . . . PassGAN's
. . Training Set Training Set Training Set Training Set Training Set

Training Set FLA Output
123456 232,844 0.9833% 123456 1 0.9833% 2.81E-3 123456 1 0.9833% 1.0096%
12345 63,135 0.2666% 12345 2 0.2666% 1.06E-3 123456789 3 0.25985% 0.222%
123456789 61,531 0.2598% 123457 3,224 0.0016% 2.87E-4 12345 2 0.266602% 0.2162%
password 47,507 0.2006% 1234566 5,769 0.0010% 1.85E-4 iloveyou 5 0.16908% 0.1006%
iloveyou 40,037 0.1691% 1234565 9,692 0.0006% 1.11E-4 1234567 7 0.07348% 0.0755%
princess 26,669 0.1126% 1234567 7 0.0735% 1.OOE-4 angel 33 0.03558% 0.0638%
1234567 17,399 0.0735% 12345669 848,078 0.0000% 9.84E-5 12345678 9 0.06983% 0.0508%
rockyou 16,765 0.0708% 123458 7.359 0.0008% 9.54E-5 iloveu 21 0.04471% 0.0485%
12345678 16,536 0.0698% 12345679 7,818 0.0007% Q.07E-5 angela 109 0.01921% 0.0338%
abel23 13,243 0.0559% 123459 8,155 0.0007% 7.33E-5 daniel 12 0.0521% 0.033%
nicole 12,992 0.0549% lover 457 0.0079% 6.73E-5 sweety 20 0.02171% 0.0257%
daniel 12,337 0.0521% love 384 0.0089% 6.09E-5 angels 57 0.02787% 0.0245%
babygirl 12,130 0.0512% 223456 69,163 0.0001% 5.14E-5 maria 210 0.01342% 0.0159%
monkey 11,726 0.0495% 22345 118,098 0.0001% 4.61E-5 loveyou 52 0.0287% 0.0154%
lovely 11,533 0.0487% 1234564 293,340 0.0000% 3.81E-5 andrew 55 0.02815% 0.0131%
jessica 11,262 0.0476% 123454 23,725 0.0003% 3.56E-5 123256 301,429 0.00003% 0.013%
654321 11,181 0.0472% 1234569 5,305 0.0010% 3.54E-5 iluvlu - - 0.0127%
michael 11,174 0.0472% lovin 39.712 0.0002% 3.21E-5 dangel 38,800 0.00018% 0.0123%

» The most likely samples from PassGAN exhibit closer resemblance to the training set and its probabilities
than FLA does.

@ NORTH CAROLINA AGRICULTURAL
AND TECHNICAL STATE UNIVERSITY Shortcomings & Performance Enhancements

» Outputs a more significant number of
passwords to achieve the same result as rule-

Approach Shortcomings based tools.

» Training PassGAN on a larger dataset

» Changing the generative model behind
Performance Enhancements PassGAN to a conditional GAN might
improve password guessing in all scenarios
in which the adversary knows a set of
keywords commonly used by the user.

NORTH CAROLINA AGRICULTURAL
AND TECHNICAL STATE UNIVERSITY

Problem Mitigation

Honey-words (false passwords) are
associated with each user’s account.

» An adversary who steals a file of Generating own model and check user’s
hashed passwords and inverts the password against generated lists Treating all human-like passwords as
hash function cannot tell if he has insecure
found the password or a honeyword. > This requires classification of human
likeliness

> The “honey-checker” can
distinguish the user password from
honey-words for the login routine,
and will set off an alarm if a honey-
word is submitted.

LAT ITL L k% 0[9]. P. B. Shamini, E. Dhivya, S. Jayasree and M. P. Lakshmi, "Detection and avoidance of attacker using honey words in purchase portal,” 2017 Third Intgr%ggébieigu

Conference on Science Technology Engineering & Management (ICONSTEM), Chennai, 2017, pp. 260-263.

@ NORTH CAROLINA AGRICULTURAL

AND TECHNICAL STATE UNIVERSITY Conclusion

» Character-level GANSs are well suited for generating password guesses.

» Current rule-based password guessing is very efficient but limited.

» The main downside of rule-based password guessing is that rules can generate only a finite,
relatively small set of passwords. In contrast, PassGAN was able to eventually surpass the
number of matches achieved using password generation rules.

» The best password guessing strategy is to use multiple tools.

» GANSs generalize well to password datasets other than their training dataset.

NORTH CAROLINA AGRICULTURAL
AND TECHNICAL STATE UNIVERSITY Q & A

NORTH CAROLINA AGRICULTURAL
AND TECHNICAL STATE UNIVERSITY

Stay Safe

Yohannes B. Bekele
March 2020

