
PassGAN: A Deep Learning Approach for
Password Guessing

(Briland Hitaj, Paolo Gasti, Giuseppe Ateniese, Fernando Perez-Cruz)

Original paper appeared in NeurIPS 2018 Workshop on Security in Machine Learning (SecML'18)

Yohannes B. Bekele

March 2020

Instructor

Dr. Mahmoud N Mahmoud

2

Outline

➢ Introduction

➢ Literature Review

➢ System Model

➢ Experiment Setup

➢ Training & Testing

➢ Evaluation

➢ Shortcomings & Performance Enhancements

➢ Problem Mitigation

➢ Conclusion

3

Introduction(1/3)

Passwords and why they matter

First and most
important line of

defense for security

Many users reuse
their passwords

When databases are
breached, stolen
passwords are usually
hashed

Password guessing

Data breaches can impact
a number of sites

Adversaries cannot directly access
the information

Identifying weak passwords when
they are stored in hashed form

4

Introduction(2/3)

Ad-hoc and based on intuitions on how
users choose passwords

• John the Ripper [1]

• HashCat [2]

Traditional Password guessing ➢ An exhaustive brute-force attack
➢ Given the set of characters[a-z], [A-Z], [0-9] with

password length up to 8,
➢ With 108 passwords/sec it takes 25 days.
➢ With 109passwords/sec, it takes 60 hours

➢ Dictionary-based attack
➢ Hash comparison

➢ Rule-based approach on top of the dictionary list.

[1]. John the Ripper. 2017. http://www.openwall.com/john/.
[2]. HashCat. 2017. https://hashcat.net.

Password Guessing Approaches

http://www.openwall.com/john/

5

Based on deep learning

• PassGAN

• FLA

Data-driven Password Guessing

Introduction(3/3)

➢ Why?
➢ Capture a large variety of properties and structures
➢ No priori knowledge needed

➢ How?
➢ Two steps:

➢ Train a deep neural network
➢ Generate new samples that follow the same

distribution.
➢ What?

➢ Generative Adversarial Networks or Recurrent Neural
Networks

Password Guessing Approaches

6

➢ Two active processes:
➢ discriminating & generating

➢ Generator tries to deceive the discriminator by
imitating the input data

➢ Discriminator tries to determine which of the
inputs are from the actual data and which are from
the generator

Literature Review(1/7)

https://pathmind.com/wiki/generative-adversarial-network-gan

Generative Adversarial Networks (GANs)

➢ Becomes better in creating similar outputs to the dataset as it iterates more

7

Literature Review(2/7)

GANs are trained by simultaneously updating the discriminative distribution (D, blue, dashed line) so that it
discriminates between samples from the data generating distribution (black, dotted line) from those of the
generative distribution G (green, solid line).

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. 2014.
Generative adversarial nets. In Advances in neural information processing systems. 2672–2680.

Expressed mathematically

8

Literature Review(3/7)

Improved Training of Wasserstein GANs (IWGAN)

➢ In GANs, initially the training error decreases as the number of layer increases. However, after
reaching a certain number of layers, training error starts increasing again.

➢ ResNet [6] :- includes “shortcut connection” between layers.

[6]. Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning for Image Recognition. 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (2016), 770–778.

➢ ResNet Network Converges faster compared to plain counter part of it.

9

Literature Review(4/7)

Name/ Authors Approach Methodology

JtR [1] Password guessing (on CPU) • Exhaustive brute force attacks;
• Dictionary-based attacks;
• Rule-based attacks
• Markov-model-based attacks

HashCat [2] Password guessing (on GPU) Same as JtR

Olsen [3] Password generation CNN

Melicher et al. [4] Password strength estimation Based on RNN, LSTM

Lingzhi Xu et al. [5] Password generation LSTM

10

Literature Review(5/7)

[3]. Olsen, Christoffer (2018). „A Machine Learning Approach to Predicting Passwords“. MA thesis. Technical University of Denmark. Available from:
https://www.researchgate.net/profile/Georg_Knabl/publication/328719001_Machine_Learning-driven_Password_Lists/links/5bdd8266299bf1124fb6f4d9/Machine-Learning-driven-Password-Lists.pdf

A Machine Learning Approach to Predicting Passwords [3]

Research question How can machine learning models be used for password cracking

Approach Uses Convolutional Neural Networks

Methodology ➢ For building and training keras framework was used
➢ Relu and softmax activation functions
➢ 38 output neurons represent each character in character set including a line-

terminator.
➢ Trained on the Rockyou dataset

Results The final validation accuracy is 41.3% and the final training accuracy is 45.4%

Drawback Slow password generation
➢ 14,000,000/100 = 140,000sec ≈ 39hours

Conv1d_1_input: InputLayer

Conv1d_1: Conv1D---300

Dropout_1: Dropout ---- 20%

dense_1: Dense---300

Conv1d_2: Conv1D---200

Global_avg_pooling1d_1:
GlobalAveragePooling1D ---200

dense_2: Dense---200

dense_3: Dense---200

dense_4: Dense---38

11

Literature Review(6/7)

[4]. William Melicher, Blase Ur, Sean M Segreti, Saranga Komanduri, Lujo Bauer, Nicolas Christin, and Lorrie Faith Cranor. 2016. Fast, Lean, and Accurate: Modeling
Password Guessability Using Neural Networks.. In USENIX Security Symposium. 175–191.

A Fast, Lean, and Accurate: Modeling Password Guessability Using Neural Networks [4]

Research question Using ANNs to model text passwords’ resistance to guessing attacks and explore how different architectures and
training methods impact NNs’ guessing effectiveness.

Approach Uses Recurrent Neural Networks

Methodology ➢ Two different recurrent architectures of RNN are used namely LSTM and refined LSTM models
➢ The models typically used three LSTM recurrent layers and two densely connected layers for a total of five layers.
➢ Keras library and neocortex browser implementation of neural networks.
➢ Testing data from Mechanical Turk (MTurk) and 000webhost

Results This approach outperforms traditional generation methods in terms of recognized password policies and at guess
numbers above 1010.

12

Literature Review(7/7)

[5]. Lingzhi Xu, Can Ge, Weidongg Qiu, Zheng Huang, Zheng Gong, Jie Guo, and Huijuan Lian. Password guessing based on lstm recurrent neural networks, July 2017

Password guessing based on LSTM recurrent neural networks [5]

Research question How to use Recurrent Neural Networks for password guessing?

Approach Uses Recurrent Neural Networks

Methodology ➢ The basic ideas of the password guessing model include:
➢ The probability distribution of x(t) can be predicted by the NN when using x(1), x(2), ...,x(t-1) as sequence

inputs
➢ Next character can be decided by a selection algorithm according to probability distribution

➢ The model contains 2 hidden LSTM layers, 256 neurons per LSTM layer
➢ The LSTM model is trained by 30 million Rockyou passwords, test with Rockyou test set (2.6 million

passwords), Myspace dataset (MS) and Facebook dataset (FB).

Results The generated 3.4 billion passwords could cover 81.52% of the remaining Rockyou dataset.

13

System Model(1/2)

http://www.cs.tufts.edu/comp/116/archive/fall2018/achen.pdf

➢ Uses IWGANs to learn the distribution of real
passwords from password leaks, and to generate
password guesses.

➢ Two Significances
➢ Can be an efficient and accurate password

cracking tool
➢ Offers a distinct advantage in being able to

create passwords indefinitely

http://www.cs.tufts.edu/comp/116/archive/fall2018/achen.pdf

14

System Model(2/2)

Detail system model

15

Experiment Setup (1/8)

● 64GB RAM, 12-core

● 2.0 GHz Intel Xeon CPU

● NVIDIA GeForce GTX 1080 Ti GPU with 11GB of global memory

Hardware

● TensorFlow version 1.2.1 for GPUs

● Python version 2.7.12

● Ubuntu 16.04.2 LTS

Software

● Batch size = 64

● Number of iterations = 199,000

● Number of discriminator iterations per generator iteration = 10

● Model dimensionality = 5*128

● Gradient penalty coefficient (λ) = 10

● Output sequence length = 10

● Size of the input noise vector (seed) = 128 FPN

● Parameters for Adam optimizer

Learning rate = 0.0001

Coefficient β1 = 0.5

Coefficient β2 = 0.9

Parameters

16

Experiment Setup (2/8)

Dependencies
Time

• Provides various time-related functions

Pickle

• Implements binary protocols for serializing and de-serializing a Python object structure

Argparse

• Write user-friendly command-line interfaces

Numpy

• Scientific computing

Tensorflow

• Numerical computation and large-scale machine learning

17

Experiment Setup (3/8)

Residual block code snippet

18

Experiment Setup (4/8)

G & D blocks’ code snippet

19

Experiment Setup (5/8)

Modeling Discriminator

Modeling Generator

20

Experiment Setup (6/8)

Training code snippet

21

Experiment Setup (7/8)

Training code snippet

➢ Adam combines the best properties of the AdaGrad and RMSProp algorithms to provide an optimization
algorithm that can handle sparse gradients on noisy problems.

➢ learning rate:- The proportion that weights are updated

➢ Beta1:- For decaying the running average of the gradient

➢ Beta2:- For decaying the running average of the square of the gradient

Adam == Adaptive moment estimation

22

Experiment Setup (8/8)

Generating samples

23

Training and Testing (1/2)

➢ Two goals:
➢ How well PassGAN predicts passwords when trained and tested on the same dataset

➢ Whether PassGAN generalizes across password datasets

[7]. RockYou. 2010. RockYou. http://downloads.skullsecurity.org/passwords/rockyou.txt.bz2
[8]. LinkedIn. [n. d.]. LinkedIn. https://hashes.org/public.php

RockYou Dataset [7]

➢A password list derived from an attack on a former MySpace supplier

✓32,503,388 passwords

✓29,599,680 passwords ≤ 10 characters

✓80% training set & 20% unobserved passwords’ testing set

LinkedIn Dataset [8]
➢43,354,871 unique passwords ≤ 10 characters

✓40,593,536 were not in the training dataset from RockYou.

http://downloads.skullsecurity.org/passwords/rockyou.txt.bz2
https://hashes.org/public.php

24

Password Sampling Procedure for HashCat, JTR, Markov Model, PCFG and FLA

Training and Testing (2/2)

HashCat and JTR
Instantiated using passwords from the training
set sorted by frequency in descending order

HashCat Best64
Generated 754,315,842 passwords, out of which
361,728,683 were unique and of length 10
characters or less

HashCat gen2 and JTR SpiderLab
Uniformly sampled a random subset of size 109

from their output

3-gram Markov model
Generated 494,369,794 unique passwords of length
10 or less

PCFG
Generated 10 billion unique passwords of length 10
or less

FLA
Trained a model containing 2-hidden layers and 1
dense layer of size 512.

➢ With p = 10−10; 747,542,984 passwords
of length 10 characters or less are
generated

25

Evaluation (1/6)

Training Loss

➢ The Jensen–Shannon divergence is a method of measuring the similarity between two probability distributions
bounded by [0,1]

➢ Minimizing generator yields minimizing the JS divergence when the discriminator is optimal.

26

Evaluation (2/6)

➢ Code demonstrated on:
➢ Intel Core i5
➢ 8GB RAM
➢ 512 SSD
➢ No GPU card

➢ Code run on Jupyter Notebook

➢ Parameters kept as initial except iterations & dataset
size

➢ 106 passwords generated

➢ Just a POC ☺☺ , took more than 4 hours

27

Evaluation (3/6)

Number of passwords generated by PassGAN that
match passwords in the RockYou testing set.

Number of unique passwords generated on various
checkpoints matching the RockYou testing set for 108

password samples

28

➢ Is PassGAN able to meet the performance of the other tools despite its lack of any a-priori knowledge
on password structures?

Evaluation (4/6)

➢ Similar trend is observed for LinkedIn testing set

➢ PassGAN has an advantage when guessing passwords from a dataset different from the one it was trained
on.

29

➢ Idea:- Use the output of multiple tools in order to combine the benefits of rule-based tools and ML-based tools

➢ Here PassGAN is combined with HashCat Best64

Evaluation (5/6)

Removed all passwords matched by
HashCat Best64 from the RockYou

and LinkedIn testing sets.

New test sets, containing 1,348,300
(RockYou) and 33,394,178 (LinkedIn)
passwords

Match 51% of passwords from the
“new” RockYou dataset, and 73%
passwords from the “new” LinkedIn
dataset.

➢ Combining rules with machine learning password guessing is an effective strategy.

➢ PassGAN can capture portions of the password space not covered by rule-based approaches.

30

Evaluation (6/6)

➢ The most likely samples from PassGAN exhibit closer resemblance to the training set and its probabilities
than FLA does.

➢ Comparison between PassGAN and FLA in terms of probability densities and password distribution

31

Approach Shortcomings

Performance Enhancements

➢ Outputs a more significant number of
passwords to achieve the same result as rule-
based tools.

➢ Training PassGAN on a larger dataset

➢ Changing the generative model behind
PassGAN to a conditional GAN might
improve password guessing in all scenarios
in which the adversary knows a set of
keywords commonly used by the user.

Shortcomings & Performance Enhancements

32

Problem Mitigation

[9]. P. B. Shamini, E. Dhivya, S. Jayasree and M. P. Lakshmi, "Detection and avoidance of attacker using honey words in purchase portal," 2017 Third International
Conference on Science Technology Engineering & Management (ICONSTEM), Chennai, 2017, pp. 260-263.

Human like passwordsUsing own modelUsing Honeywords [9]

Honey-words (false passwords) are
associated with each user’s account.

➢ An adversary who steals a file of
hashed passwords and inverts the
hash function cannot tell if he has
found the password or a honeyword.

➢ The “honey-checker” can
distinguish the user password from
honey-words for the login routine,
and will set off an alarm if a honey-
word is submitted.

Generating own model and check user‘s
password against generated lists Treating all human-like passwords as

insecure
➢ This requires classification of human

likeliness

33

Conclusion

➢ Character-level GANs are well suited for generating password guesses.

➢ Current rule-based password guessing is very efficient but limited.

➢ The main downside of rule-based password guessing is that rules can generate only a finite,
relatively small set of passwords. In contrast, PassGAN was able to eventually surpass the
number of matches achieved using password generation rules.

➢ The best password guessing strategy is to use multiple tools.

➢ GANs generalize well to password datasets other than their training dataset.

34

Q & A

Q & A

35

Stay Safe

PassGAN: A Deep Learning Approach for Password

Guessing

Yohannes B. Bekele

March 2020

