
Dr. Mahmoud Nabil

Dr. Mahmoud Nabil
mnmahmoud@ncat.edu

North Carolina A & T State University

March 11, 2020

Dr. Mahmoud Nabil (NCAT) March 11, 2020 1 / 170

ECEN 685-885 - Machine Learning in Cyber-security



Talk Overview

1 Introduction

2 Mathematical Background
Finite Groups

3 Basic Cryptographic Primitives
Symmetric key Cryptography
Asymmetric key Cryptography
Key Exchange Protocols
Cryptographic Hash Functions
Elliptic Curve Cryptography
Bilinear Pairing
Secure Multi-Party Computation

Garbeled Circuits
Arithemtic Circuits

4 Cryptographic Libraries

Dr. Mahmoud Nabil (NCAT) March 11, 2020 2 / 170



Introduction

Outline

1 Introduction

2 Mathematical Background
Finite Groups

3 Basic Cryptographic Primitives
Symmetric key Cryptography
Asymmetric key Cryptography
Key Exchange Protocols
Cryptographic Hash Functions
Elliptic Curve Cryptography
Bilinear Pairing
Secure Multi-Party Computation

Garbeled Circuits
Arithemtic Circuits

4 Cryptographic Libraries

Dr. Mahmoud Nabil (NCAT) March 11, 2020 3 / 170



Introduction

What is Cryptology?

Cryptology

Cryptography
Cryptanalysis

Cryptography, a word with Greek origins, means secret writing.

However, we use the term to refer to the science and art of
transforming messages to make them secure and immune to attacks.

A cipher is a function which transforms a plaintext message into a
ciphertext by a process called encryption.

Plaintext is recovered from the ciphertext by a process called
decryption.
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Introduction

Encryption / Decryption
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Introduction

Cryptanalysis

The science and study of breaking ciphers, i.e., the process of
determining the plaintext message from the ciphertext

Objective to recover key not just message

A common approach is brute-force attack - try all possible cases
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Introduction

Overview of Security Requirements

1 Confidentiality

2 Entity Authentication

3 Data Integrity

4 Non-Repudiation

5 Access Control

6 Availability

Note

Most of these security properties can be achieved through cryptographic
functions.
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Introduction

Confidentiality

Confidentiality

Ability to keep information communicated between (among) authorized
parties private.

Observer should not be able to recover information

In a stronger sense, an observer cannot determine the parties involved
or whether a communication session occurred

Usually achieved by encryption

Snooping refers to unauthorized access to or interception of data.

Traffic analysis refers to obtaining some other type of information by
monitoring online traffic.
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Introduction

Entity Authentication (1/2)

Entity Authentication

Ability of the authorized parties in a communication session to ascertain
the identity of other authorized parties

Mutual or one-way authentication

An entity authentication may be a user authentication or a device
authentication

The party to be authenticated must provide some verifiable evidence
to prove it is the entity identified by the identity.

The verification is to check whether the specific authentication data
is valid, which can be generated only by the party with the claimed
identity.

Authentication can thwart masquerading or spoofing attacks which
happen when attackers impersonate somebody else.
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Introduction

Entity Authentication (2/2)

Alice sends a msg M to Bob

Bob wants to be sure M is really from Alice

Alice attaches with the message an authentication data such as
signature or message authentication code (MAC).

No one can generate this data except Alice (the owner of a secret
key).

Bob is able to verify the authentication data
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Introduction

Data Integrity

Data Integrity

Ability to ascertain that information exchanged has not been subject to
additions, deletions, modifications or undue delay.

Attacks threatening integrity

Modification: attackers intercept a message and change it.
Modification can be thwarted by using signature or message
authentication code.

Replay: attackers obtain a copy of a message sent by a user and later
tries to replay it. Usually timestamps are used to thwart replaying.
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Introduction

Integrity vs Authentication

Integrity is to prevent from altering the message content, while
authenticity is to prevent from altering the message source.

These two are inseparable. It is often to use a single cryptographic
functionto provide both.

Usually, signature and hash functions or MAC can provide integrity
and authentication
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Introduction

Non-Repudiation

Non-Repudiation

Ability to prevent an authorized party from denying the existence or
contents of a communication session.

Repudiation means that sender of a message might later deny that
she has sent the message; the receiver of the message might later
deny that he has received the message.

Ability to prove to an independent third party at a later date the
author and contents of a message.

Digital signature is used to achieve this property.
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Introduction

Access control

Access control

Aims to prevent unauthorized access to resources.

Permission to access a resource is called authorization.

Usually the same piece of knowledge used for authentication is used
to grant the authorization to the resource.
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Introduction

Availability

Availability

The information created and stored by an organization needs to be
available to authorized entities.

Network/system should be available all the time.

Denial of service (DoS) is a very common attack that targets
availability . It may slow down or totally interrupt the service of a
system.
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Introduction

So what is security?

Security

Security is about how to prevent attacks, or – if prevention is not possible
– how to detect attacks and recover from them.

Passive Attacks
Eavesdropping: The attacker simply listens and tries to interpret the
data being exchanged - if the data is in-the- clear, they succeed
Traffic Analysis: the attacker gains information by determining how
much activity is there, where access points are located,
Difficult to detect. Should be prevented.

Active Attacks
Attempts to alter system resources or affect their operation, examples:
masquerade (spoofing), replay, modification (substitution, insertion,
destruction), denial of service.
Difficult to prevent. Should be detected.
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Introduction

Categorization of Passive and Active attacks

Attacks Passive/Active Threateing
Snooping

Traffic Analysis
Passive Confidentiality

Modification
Masquerading/Spoofing

Replaying
Repudiation

Active

Integrity
Authentication
Access Control

Non Repudiation

Denial of Service Active Avaliablity

Dr. Mahmoud Nabil (NCAT) March 11, 2020 17 / 170



Introduction

Kerckhoff’s Principle

Generally assumed that the attacker knows everything about the
cryptosystem except the key.

Note

If, for security, the system requires that details of the system be kept
secret, it is not considered secure.
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Introduction

Trust Model

Trust Model

A trust model is to define trust relations among different parties.

A trust relation can be defined for any two parties with a mutually
equal trust or a asymmetric trust.

A trust model may include assumptions on the physical environment.
For example, we may trust a server located in a companys building
more than a wireless access point installed in a rest area of highway.

A trust model is crucial in establishing a secure communication
system. It can go wrong in many ways and result in security holes.
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Introduction

Adversary and Threat Models

Threat Model

A Threat model is to define parties that may attack the system and the
attackers’ objectives - what they want to do?.

Also we define how attackers will attack the system?

What is the attackers’ capability, e.g., regarding computational
power?

Is the attacker a single party or colluding with others?
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Mathematical Background

Groups

A set of objects, along with a binary operation (meaning an operation that is
applied to two objects at a time) on the elements of the set, must satisfy/has
the following four properties.

1 Closure with respect to the operation. Closure means that if a and b
are in the set, then the element a ○ b = c is also in the set. The
symbol ○ denotes the operator for the desired operation.

2 Associativity with respect to the operation. Associativity means that
(a ○ b) ○ c = a ○ (b ○ c)

3 A unique identity element with regard to the operation ○. An
element i would be called an identity element if for every a in the set,
we have a ○ i = a.

4 An Inverse element for each element with regard to the operation.
That is, for every a in the set, the set must also contain an element b
such that a ○ b = i . assuming that i is the identity element.
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Mathematical Background

Groups

In general, a group is denoted by {G, ○} where G is the set of objects
and ○ is the operator.

Infinite groups, meaning groups based on sets of infinite size.

A finite group contains finite number of elements. The number of
elements in G is called the group order and is denoted as ∣G ∣

Ex.

The set of all integers: positive, negative, and zero - along with the
operation of arithmetic addition constitutes a group

The set of all even integers : positive, negative, and zero under the
operation of arithmetic addition is a group If the operation on the set
elements is commutative, the group is called an abelian group. An
operation ○ is commutative if a ○ b = b ○ a.
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Mathematical Background

Group Example
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Mathematical Background

Formal Summary

Defination

A group is a set G together with a binary operation ○ on G that the
following properties hold.

Associativity, that is for any a,b, c ∈ G , (a ○ b) ○ c = a ○ (b ○ c)

There is an identity or unity e ∈ G such that for all a ∈ G , a ○ e = e ○ a = a

For each a ∈ G there exist an Inverse element a−1 ∈ G such that a ○ a−1 = e

Sometimes, we denote the group as triple (G , ○, e) if the group also satisfy

for all a, b ∈ G : a ○ b = b ○ a

Then the group is called abelian or commutative group.
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Mathematical Background

Example

Z, the set consisting of all integers.

Q, the set consisting of all rational numbers.

+ and × are ordinary addition and multiplication.

Then

(Z, +, 0), (Q, +, 0), (Q*, ×, 1) are all groups where Q* is the set of
all nonzero rational numbers.

Furthermore, the are abelian.

How about (Z*, ×, 1)?
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Mathematical Background

Notes on Groups

If the group operation is addition, the group also allows for subtraction.
Similarly, multiplicative groups allow division.

A group is guaranteed to have a special element called the identity
element. The identity element of a group is frequently denoted by the
symbol 0.
As you now know, for every element a, the group must contain its
inverse element b such that a + b = 0, where the operator + is the
group operator.
So if we maintain the illusion that we want to refer to the group
operation as addition, we can think of b in the above equation as the
additive inverse of a and even denote it by -a. We can therefore write
a + (-a) = 0 or more compactly as a - a = 0.
In general a - b = a + (-b) where -b is the additive inverse of b with
respect to the group operator +. We may now refer to an expression
of the sort a - b as representing subtraction
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Mathematical Background Finite Groups

Set of Residues

One of the most important structures in crypt: Residues modulo n

Let n be a positive integer n > 1 and Zn represent the set of reminder of all
integers on division n, then

Zn = {0,1,2, . . . ,n − 1}

We define a+ b and a× b the ordinary sum and product of a and b reduced
by modulo n respectively. Let

Z∗

n = {a ∈ Zn∣a ≠ 0}

Then

(Zn,+,0) forms a group residue n.

(Z∗

p ,×,1) forms a group residue prime p.
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Mathematical Background Finite Groups

Example
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Mathematical Background Finite Groups

Set of Residues

The modulo operation creates a set, which in modular arithmetic is referred
to as the set of least residues modulo n, or Zn.

Zn = {0,1,2, . . . ,n − 1}

Ex.

Z2 = {0,1,2} prime residue

Z6 = {0,1,2,3,4,5,6}
Z11 = {0,1,2,3,4,5,6,7,8,9,10,11} prime residue
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Mathematical Background Finite Groups

Operation in Zn

The three binary operations that we discussed for the set Z can also be
defined for the set Zn. The result may need to be mapped to Zn using the
mod operator.
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Mathematical Background Finite Groups

Example

Perform the following operations (the inputs come from Zn):

1 Add 7 to 14 in Z15.

2 Subtract 11 from 7 in Z13.

3 Multiply 11 by 7 in Z20.

Sol.

1 (14+7) mod 15 → 21 mod 15 = 6

2 (7-11) mod 13 → (-4) mod 13 = 9

3 (7×11) mod 20 → 77 mod 20 = 17
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Mathematical Background Finite Groups

Inverses

When we are working in modular arithmetic, we often need to find the
inverse of a number relative to an operation.

An additive inverse (relative to an addition operation)

A multiplicative inverse (relative to a multiplication operation).
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Mathematical Background Finite Groups

Additive Inverse

In Zn, two numbers a and b are additive inverses of each other if

a + b ≡ 0 mod n

In modular arithmetic, each integer has an additive inverse. The sum of an
integer and its additive inverse is congruent to 0 modulo n.

Ex.
Find all additive inverse pairs in Z10

Sol.

The six pairs of additive inverses are (0, 0), (1, 9), (2, 8), (3, 7), (4, 6),
and (5, 5).
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Mathematical Background Finite Groups

Multiplicative Inverse

In Zn, two numbers a and b are the multiplicative inverse of each other if

a × b ≡ 1 mod n

In modular arithmetic, an integer may or may not have a multiplicative
inverse. When it does, the product of the integer and its multiplicative
inverse is congruent to 1 modulo n.

Ex.
Find all multiplicative inverse pairs in Z11

Sol.

The seven pairs of multiplicative inverses are: (1, 1), (2, 6), (3, 4), (5, 9),
(7, 8), (9, 5), and (10, 10).

Cryptography often uses these two sets: Zp and Z∗

p . The modulus in these
two sets is a prime number.
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Mathematical Background Finite Groups

Cyclic Group

Cyclic Group

A multiplicative group is said to be cyclic if there is an element a ∈ G such
that for any b ∈ G there is some integer i with b = ai Such an element a is
called the group generator of the cyclic group, and we write G =< a >

Ex.
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Mathematical Background Finite Groups

Examples

(Z∗

3 ,×,1), cyclic group with generator 2.

Z∗

3 = {1,2} = < 2 > = {20 = 1,21 = 2}, 22 = 1 mod 3

(Z∗

7 ,×,1), cyclic group with generator 3.

Z∗

7 = {0, 1, 2, 3, 4, 5, 6}
Z∗

7 = < 3 > = {30 = 1, 32 = 2, 31 = 3, 34 = 4, 35 = 5, 33 = 6, 36 = 1}
(Z∗

5 ,×,1), cyclic group with generator 3.

Z∗

5 = {0, 1, 2, 3, 4}
Z∗

5 = < 2 > = {20 = 1, 21 = 2, 23 = 3 ,22 = 4}
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Mathematical Background Finite Groups

Rings

If we can define one more operation on an abelian group, we have a
ring, provided the elements of the set satisfy some properties with
respect to this new operation also.

A ring is typically denoted {R,+,} where R denotes the set of objects,
+ the operator with respect to which R is an abelian group, the the
additional operator needed for R to form a ring.
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Mathematical Background Finite Groups

Properties of the Elements with Respect to the Ring
Operator

1 R must be closed with respect to the additional operator .

2 R must exhibit associativity with respect to the additional operator .

3 The additional operator (that is, the multiplication operator) must
distribute over the group addition operator. That is
a (b + c) = a b + a c
(a + b) c = a c + b c

The multiplication operation is frequently shown by just concatenation in
such equations:
a(b + c) = ab + ac
(a + b)c = ac + bc
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Mathematical Background Finite Groups

Examples of Rings

The set of all even integers, positive, negative, and zero, under the
operations arithmetic addition and multiplication is a ring.

The set of all integers under the operations of arithmetic addition and
multiplication is a ring.

The set of all real numbers under the operations of arithmetic
addition and multiplication is a ring.

Commutative Rings

A ring is commutative if the multiplication operation is commutative
for all elements in the ring. That is, if all a and b in R satisfy the
property ab = ba

The previous three examples are for commutative rings.
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Mathematical Background Finite Groups

Rings Formal Summary

Ring

A ring (R, +, ) is a set R, together with two binary operations, denoted by
+, such that:

R is abelian group with respect to +

is associative, that is,

(a b) c = a (b c) for all a, b, c ∈ R

The distributive law hold for ; that is, for all a, b, c ∈ R we have

a (b + c) = a b + a c

Ex.

1 (Z, +, ), (Q, +, ) infinite rings

2 (Zn, +, ) finite ring (residue class ring modulo n)
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Mathematical Background Finite Groups

Integral Domain

An integral domain R,+, is a commutative ring that obeys the following two
additional properties:

1 ADDITIONAL PROPERTY 1: The set R must include an identity
element for the multiplicative operation. That is, it should be possible
to symbolically designate an element of the set R as 1 so that for
every element a of the set we can say a 1 = 1 a = a

2 ADDITIONAL PROPERTY 2: Let 0 denote the identity element
for the addition operation. If a multiplication of any two elements a
and b of R results in 0, that is if ab = 0 then either a or b must be 0.

Examples

The set of all integers under the operations of arithmetic addition and
multiplication.
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Mathematical Background Finite Groups

Fields

Field

A field, denoted {F, +, }, is an integral domain whose elements satisfy the
following additional property:

For every element a in F, except the element designated 0 (the
identity element for the ’+’ operator), there must also exist in F its
multiplicative inverse.

That is, if a ∈ F and a + b = 0, then there must exist an element b ∈ F
such that a b = b a = 1 where ’1’ symbolically denotes the element which
serves as the identity element for the multiplication operation.

For a given a, the multiplicative inverse is designated as a−1.

Note That

A field has a multiplicative inverse for every element except the element
that serves as the identity element for the group operator.
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Mathematical Background Finite Groups

Examples of Fields

1 The set of all real numbers under the operations of arithmetic
addition and multiplication

Is a field.

2 The set of all rational numbers under the operations of arithmetic
addition and multiplication

Is a field.

3 The set of all even integers, positive, negative, and zero, under the
operations arithmetic addition and multiplication.

NOT a field.

4 The set of all integers under the operations of arithmetic addition and
multiplication

NOT a field.
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Mathematical Background Finite Groups

Field Summary

A field is a set of elements with addition and multiplication operations
satisfying these rules:

1 Two operations (addition and multiplication) are defined on every
element in the field.

2 Closure The addition/multiplication of two elements in the field gives
an element in the field.

3 Associativity a+(b+c) = (a+b)+c and a(bc) = (ab)c, where a, b
and c are elements in the field.

4 Commutativity a+b = b+a and ab = ba
5 Additive identity Theres a single element denoted 0 such that a + 0

= a for all elements in the field.
6 Multiplicative identity There is an element denoted 1 that a1 = a

for every element in the field.
7 Multiplicative inverse For a given a, where a≠ 0 the multiplicative

inverse is designated as a−1

Dr. Mahmoud Nabil (NCAT) March 11, 2020 46 / 170



Mathematical Background Finite Groups

Zp Facts

We are dealing with primes p on the order of 300 digits long, (1024
bits).

For a prime p let Zp ={0,1,2, ...,p − 1}.

Elements of Zp can be added and multiplied modulo p.
The inverse of x ∈ Zp is an element a satisfying a * x = 1 mod p
Fermats theorem: for any g ≠ 0 mod p we have: gp−1 = 1 mod p.

Example: 34 mod 5 = 81 mod 5 = 1

All elements x ∈ Zp except for x = 0 are invertible.

Simple inversion algorithm: x−1 = xp−2 mod p.

we can deal with (Zp, +, ×) as field.
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Mathematical Background Finite Groups

Z ∗
p Facts

Z∗

p is a cyclic group. In other words, there exists g ∈ Z∗

p such that

Z∗

p = {1,g ,g2,g3, ...,gp−2}. g is called a generator of Z∗

p .

Example: Z∗

7 : < 3 > = {1,3,32,33,34,35,36}
= {1,3,2,6,4,5} (mod7) = Z∗

7 .

Not every element of Z∗

p can be a generator.
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Mathematical Background Finite Groups

Problems that are believed to be hard in Z ∗
p

Let g be a generator of Z∗

p . Given x ∈ Z∗

p find an r such that x = g r

mod p. This is known as the discrete log problem.

Let g be a generator of Z∗

p . Given x, y ∈ Z∗

p where x = g r1 and y =
g r2 . Find z = g r1r2 . This is known as the Diffie-Hellman problem.
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Basic Cryptographic Primitives Symmetric key Cryptography
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Basic Cryptographic Primitives Symmetric key Cryptography

Friends and Enemies

Bob, Alice (lovers!) want to communicate securely

Eve (or Trudy, intruder) may intercept, delete, add messages
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Basic Cryptographic Primitives Symmetric key Cryptography

The Language of Cryptography

Symmetric key crypto: sender, receiver keys identical

Public-key crypto: encryption key (public), decryption key secret
(private)
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Basic Cryptographic Primitives Symmetric key Cryptography

Attacks

The following are cryptanalysis methods to measure the security of encryp-
tion schemes. (ordered from weakest to strongest)

Attacker may have
1 Collection of ciphertexts (known

ciphertext attack)
2 collection of plaintext/ciphertext pairs

(known plaintext attack)
3 collection of plaintext/ciphertext pairs

for plaintexts selected by the attacker
(chosen plaintext attack)

4 collection of plaintext/ciphertext pairs
for ciphertexts selected by the attacker
(chosen ciphertext attack)
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Basic Cryptographic Primitives Symmetric key Cryptography

Brute Force Attack

Try all possible keys K and determine if DK(C) is a likely plaintext

Requires some knowledge of the structure of the plaintext (e.g., PDF
file or email message)

Key should be a sufficiently long random value to make exhaustive
search attacks unfeasible
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Basic Cryptographic Primitives Symmetric key Cryptography

Symmetric Cryptosystem

Scenario
Alice wants to send a message (plaintext P) to Bob.
The communication channel is insecure and can be eavesdropped
If Alice and Bob have previously agreed on a symmetric encryption
scheme and a secret key K, the message can be sent encrypted
(ciphertext C)

Issues
What is a good symmetric encryption scheme?
What is the complexity of encrypting/decrypting?
What is the size of the ciphertext, relative to the plaintext?
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Basic Cryptographic Primitives Symmetric key Cryptography

Symmetric Key Cryptography Basics

Notation
Secret key K
Encryption function EK(P)
Decryption function DK(C)
Plaintext length typically the same as ciphertext length
Encryption and decryption are one-to-one mapping functions on the set
of all n-bit arrays

Efficiency
functions EK and DK should have efficient algorithms

Consistency
Decrypting the ciphertext yields the plaintext
DK(EK(P)) = P
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Basic Cryptographic Primitives Symmetric key Cryptography

Classical Cryptography

Transposition Cipher

Substitution Cipher

Simple substitution cipher (Caesar cipher)
Vigenere cipher
One-time pad
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Basic Cryptographic Primitives Symmetric key Cryptography

Transposition Cipher: rail fence

Write plaintext in two or more rows

Generate ciphertext in column order

Example:
”HELLOWORLD”

HLOOL
ELWRD

ciphertext: HLOOLELWRD

Note

Problem: does not affect the frequency of individual symbols
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Basic Cryptographic Primitives Symmetric key Cryptography

Substitution Ciphers

Each letter is uniquely replaced by another.

There are 26! possible substitution ciphers for English language.

Also know as Caesar Cipher

One popular substitution cipher for some Internet posts is ROT13.
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Basic Cryptographic Primitives Symmetric key Cryptography

Frequency Analysis

Letters in a natural language, like English, are not uniformly
distributed.

Knowledge of letter frequencies, including pairs and triples can be
used in cryptologic attacks against substitution ciphers.

Dr. Mahmoud Nabil (NCAT) March 11, 2020 61 / 170



Basic Cryptographic Primitives Symmetric key Cryptography

Vigenere Cipher

Idea: Uses Caesar’s cipher with various different shifts, in order to
hide the distribution of the letters.

A key defines the shift used in each letter in the text

A key is repeated as many times as required to become the same
length of the plaintext.

Example.
Plain text: I a t t a c k
Key: 2 3 4 2 3 4 2 (key is ”234”)
Cipher text: K d x v d g m
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Problem of Vigenere Cipher

Vigenere is easy to break (Kasiski, 1863):

Assume we know the length of the key. We can organize the
ciphertext in rows with the same length of the key. Then, every
column can be seen as encrypted using Caesar’s cipher.

Length of the key can be induced using several techniques.
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One-Time Pads

Extended from Vigenere cipher

There is one type of substitution cipher that is absolutely unbreakable.

The one-time pad was invented in 1917 by Joseph Mauborgne and
Gilbert Vernam We use a block of shift keys, (k1, k2, ..., kn), to
encrypt a plaintext, M, of length n, with each shift key being chosen
uniformly at random.

Since each shift is random, every ciphertext is equally likely for any
plaintext.

Note that

One time pad is not practical to implement. Why?

The key has to be as long as the plaintext
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Practical Symmetric Key Encryption

Two Types of symmetric key encryption

Block Ciphers.
Stream Ciphers.
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Block Cipher

In a block cipher:

Plaintext and ciphertext have fixed length b (e.g., 128 bits)
A plaintext of length n is partitioned into a sequence of m blocks.

P[0], . . . , P[m-1].

Each message is divided into a sequence of blocks and encrypted or
decrypted in terms of its blocks.
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Padding

Block ciphers require the length of the plaintext to be a multiple of
the block size b

Padding the last block needs to be unambiguous (cannot just add
zeroes)

When the block size and plaintext length are a multiple of 8, a
common padding method (PKCS5) is a sequence of identical bytes,
each indicating the length (in bytes) of the padding

Example for b = 128 (16 bytes)
Plaintext: ”Roberto” (7 bytes)
Padded plaintext: ”Roberto999999999” (16 bytes), where 9 denotes the
number and not the character
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Desirable Properties of Ciphers

Security
1 Diffusion Process of spreading effect of plaintext or key as widely as

possible over ciphertext

Avalanche effect

Approximately half of the ciphertext bits change (at random) in response
to a one bit change in the plaintext or the key.

2 Confusion The relationship between key and ciphertext bits should
be complicated. Ciphertext and plaintext should appear to be
statistically independent

Efficiency
1 High encryption and decryption rate.
2 Simplicity (easier to implement and analyze).
3 Suitability for hardware or software.
4 Key size should be small, but large enough to preclude exhaustive key

search.
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Block Ciphers in Practice

Data Encryption Standard (DES)
Developed by IBM and adopted by NIST in 1977 64-bit blocks and
56-bit keys
Small key space makes exhaustive search attack feasible since late 90s

Triple DES (3DES)
Nested application of DES with three different keys KA,KB , and KC

Effective key length is 168 bits, making exhaustive search attacks
unfeasible
C = EKC

(DKB
(EKA

(P))); P = DKA
(EKB

(DKC
(C)))

Equivalent to DES when KA = KB = KC (backward compatible)

Advanced Encryption Standard (AES)
Selected by NIST in 2001 through open international competition and
public discussion
128-bit blocks and several possible key lengths: 128, 192 and 256 bits
Exhaustive search attack not currently possible
AES-256 is the symmetric encryption algorithm of choice
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Data Encryption Standard (DES)

Underling principle: Take
something simple and use it several
times; hope that the result is
complicated.

Easy to implement. The code of
one round can be repeated.

It was observed that alternating
rounds of simple substitutions and
transpositions could produce a strong
cipher (even though individual
operations are not strong).

Each round is simply some substitution and permutation operation
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Advanced Encryption Standard (AES)

Same underlying principle

AES operates on 128-bit blocks.
It is designed to be used with
keys that are 128, 192, or 256
bits long, yielding ciphers known
as AES-128, AES-192, and
AES-256.

Each round is simply some substitution and permutation operation
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Block Cipher Modes

A block cipher mode describes the way a block cipher encrypts and
decrypts a sequence of message blocks.

Electronic Code Book (ECB) Mode (is the simplest):

Block P[i] encrypted into ciphertext block C[i] = EK(P[i])
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Block Ciphers Modes (ECB)

Strengths
Is very simple
Allows for parallel encryptions of the blocks of a plaintext
Can tolerate the loss or damage of a block

Weakness
Documents and images are not suitable for ECB encryption since
patters in the plaintext are repeated in the ciphertext
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Cipher Block Chaining (CBC) Mode

In Cipher Block Chaining (CBC) Mode

The previous ciphertext block is combined with the current plaintext
block
C [i] = EK(C [i − 1]⊕ P[i])
C [−1] = V , a random block separately transmitted encrypted (known
as the initialization vector)
Decryption: P[i] = C [i − 1]⊕DK(C [i])
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Block Ciphers Modes (CBC)

Strengths
Doesnt show patterns in the plaintext
Is the most common mode
Is fast and relatively simple

Weakness
CBC requires the reliable transmission of all the blocks sequentially
CBC is not suitable for applications that allow packet losses (e.g.,
music and video streaming)
Error propagation: One bit error in a ciphertext block Cj has an effect
on the j-th and the following plaintexts.
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Stream Ciphers
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Stream Ciphers

Suitable when data is transmitted in serial form (one bit at a time).

A pseudorandom generator is used to generate Key-Stream which is
combined with Message-Stream to produce Cipher- Stream

No error propagation a ciphertext character that is modified during
transmission affects only the decryption of that character. May be
advantageous when transmission errors are probable such as in
wireless transmissions.

Shannons Result (1948): One-time-pad is unbreakable assuming the
key stream is random and cannot be reconstructed.

One-time-pad means that different messages are encrypted by
different key streams.

The key stream is generated independently at the sender and receiver
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Pseudorandom generator

A random number is a number that cannot be predicted by an
observer before it is generated.

A cryptographic pseudo-random number generator (PRNG) is a
mechanism that takes as input a (random and secret) seed, and
outputs a longer pseudorandom sequence called the keystream.

if designed, implemented, and used properly, then even an adversary
with enormous computational power should not be able to distinguish
the PRNG output from a real random sequence
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Pseudorandom generator: Feedback Shift Registers (FSR)

At each clock pulse: the state of
each memory stage is shifted to the
next stage in line, i.e., there is a
transition from one state to next
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Pseudorandom generator: Feedback Shift Registers (FSR)
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Desirable properties of PRNGs

The adversary cannot compute the internal state of the PRNG, even
if she has observed many outputs of the PRNG

The adversary cannot compute the next output of the PRNG, even if
she has observed many previous outputs of the PRNG

It should be difficult to detect the seed from the output stream.

Needs synchronization between the sender and the receiver. If a
character is inserted into or deleted from the ciphertext stream then
synchronization is lost and the plaintext cannot be recovered.
Additional techniques must be used to recover from loss of synch.

The keystream should be indistinguishable from a random sequence.
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Dangers of Keystream Reuse

What if we reused the same keystream for different ciphertexts?

Analysis on M1 ⊕M2 can reveal one or both plaintexts.

The same seed should not be reused to avoid generating the same key
stream.
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Symmetric-key and asymmetric-key ciphers are complements of each
other; the advantages of one can compensate for the disadvantages of
the other.

Asymmetric-key ciphers are sometimes called public-key ciphers.
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Public Key Cryptosystms Security

Public Key cryptosystems are base on the difficulty of the following
computational problems.

1 Factoring Large Integers (Will be covered)

It is easy to compute n = p × q given two large primes p and q, but it
is hard to find p and q given n. Used in RSA

2 Finite Discrete Logarithms (Will be covered)

Given g and (g a mod P) are two points in a finite field, it is infeasible
to calculate a, where P is a large prime number.

3 Elliptic Curve Discrete Logarithms (Will be covered)

Given P and aP are two points in an elliptic curve, it is infeasible to
calculate a.

4 Lattice-based Cryptography (Will not be covered)

Resistant to attack by both classical and quantum computers.
Is based on shortest vector problem (SVP).
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RSA

RSA is one of the first public-key cryptosystems. First published 1977.

Depends on the difficulty of factorizing large prime numbers.

Choosing Keys:

1 Choose two large prime numbers p, q. (e.g., 1024 bits each)

2 Compute n = pq, z = (p-1)(q-1)

3 Choose e (with e<n) that has no common factors with z. (e, z are
relatively prime).

4 Choose d such that ed mod z = 1 . (i.e., e and d are multiplicative
inverses with respect to modulo z)

5 Public key is (n,e). Private key is (n,d)
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RSA: Encryption, decryption

1 Given (n, e) and (n,d) as computed above

2 To encrypt bit pattern, m, compute c = me mod n (i.e., remainder
when m is divided by n)

3 To decrypt received bit pattern, c, compute m = cd mod n (i.e.,
remainder when c is divided by n)

Magic Happens

m = (me mod n)d
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

c

mod n
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RSA example

Bob chooses p=5, q=7. Then n=35, z=24.

e=5 (so e, z are relatively prime).
d=29 (so ed = 1 mod z).

Encrypt
Let m =12
me = 125 = 1524832
me mod n = 17

Decrypt
Let c =17
cd = 1729 = 481968572106750915091411825223071697
cd mod n = 12

Computationally expensive!
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Why it works?

m = (me mod n)d
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

c

mod n

Useful number theory result: If p,q prime and n = pq, then:

xy mod n = xy mod (p-1)(q-1) mod n

(me mod n)d mod n = med mod n

= med mod (p-1)(q-1) mod n

= m1 mod n remember ed are multiplicative inverses for modulo (p-1)(q-1)

= m
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RSA First Property

Ee(Dd(m)) = m = Ed(De(m))

1 use public key first, followed by private key
2 use private key first, followed by public key

Result is the same in both cases

Encryption with private key is used for signing messages
In digital signature, only one entity can sign a message (i.e., private
key holder), and any one can verify the signature (i.e., public key
holder(s)).

Ex.

Alice send (m, Ence(m))

Bob check Decd(Ence(m)) ?= m

Entity authentication and data interity are achieved but not the
confidentiality.
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RSA signature scheme
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RSA signature scheme
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RSA Second Property

E(m1).E(m2) = me
1.m

e
2 mod n

= (m1.m2)e mod n

= E(m1.m2)

RSA is Partially homomorphic cryptosystem
(Allow multiplication on encrypted data)
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RSA Security

Security of RSA based on difficulty of factoring of n=pq

Widely believed
Best known algorithm takes exponential time

RSA in practice:

Time consuming process

DES is 100 times (in sw) and 10000 times (in hw) faster than RSA.

Usually exponentiation operations are time consuming.

Key length should be at least 1024 or 2048
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Elgamal Encryption

Depends on the difficulty of computing discrete logarithms (Discrete
logarithm problem)

It was described by Taher Elgamal (Egyptian Cryptograper) in 1985.

Discrete logarithm problem

Given g a generator (primitive root) of finite field Z∗

p and ga it is difficult
to get back a.
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Elgamal Encryption

Bob Public key: e1, e1, p
Bob Private key: d
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Elgamal example

Bob chooses p = 11 and e1 = 2, and d = 3 then e2 = ed1 = 8

Public key is (2, 8, 11) and the private key is 3

Encryption: Alice chooses r = 4 and calculates C1 and C2 for the
plaintext 7

Plaintext: (7)
C1 = er1 mod 11 = 16 mod 11 = 5 mod 11
C2 = P × er2 = 7 × 4096 mod 11 = 6 mod 11
Cipher: (5,6)

Decryption: Bob receives the ciphertexts (5 and 6) and calculates
the plaintext Plaintext:

C2 × (C1d)−1 mod 11 = 6 × ((53)−1) mod 11 = 6 × 3 mod 11 = 7
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Elgamal properties

It has the advantage that the same plaintext gives a different
ciphertext (with near certainty) each time it is encrypted. If an
attacker knows a plaintext-ciphertext pair, he cannot know the
plaintext when it is encrypted several times.

- The random number r should not be reused. Why?

Assume P1 and P2 are encrypted using the same r.
The ciphertext of message M1 is C1 = (er1, er2P1)
The ciphertext of message P2 is C2 = (er1, er2P2)
C1 x C−12 = (1,P1/P2) If the attacker knows one message he can get
the other
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Elgamal Homomorphic Property

E(m1).E(m2) = (er11 , e
r1
2 P1) ∗ (er21 , e

r2
2 P2)

= (er1+r21 ,P1.P2e
r1+r2
2 )

= E(m1.m2)

RSA is Partially homomorphic cryptosystem
(Allow multiplication on encrypted data)
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Other Homomorphic Schemes

Paillier Scheme: Allow homomorphic addition.

E(m1).E(m2) = E(m1 +m2)

E(m1)k = E(k.m1)

Fully Homomorphic Encryption:

Allow homomorphic addition and homomorphic.
Based on lattice based cryptography.
Crypto Nets 1 uses homomorphic encryption to do encrypted prediction
for neural networks.

1https://arxiv.org/pdf/1412.6181.pdf
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Comparison between Symmetric and Asymmetric key
Cryptography

Advantages of Symmetric Key Cryptography

Symmetric-key algorithms are generally fast, but Key management is
a problem.

However, asymmetric key algorithms are slow:

In practice, asymmetric key algorithms are typically hundreds to
thousands times slower than symmetric key algorithms.

Drawbacks of Symmetric Key:

Key Establishment problem

Key management problem How?

Non-repudation is hard to achieve. Why?

That does not mean symmetric key cryptography is useless. It is used with
asymmetric key cryptography as will be explained later.
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Comparison between Symmetric and Asymmetric key
Cryptography

Advantages of Asymmetric Key Cryptography

No requirements for a secret channel for key transfer.

Each user has only one key pair which simplifies the key management

Facilaites the provision of non-repudation

Allow some homomorphic operations on the encrypted data.

Drawbacks of Asymmetric Key:

Asymmetric keys are typically larger than symmetric keys.

Asymmetric Key schemes are slower than symmetric key counterparts.
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Hybrid Schemes

Public key cryptography is used to share a symmetric key and symmetric
key cryptography is used for data encryption because it is more efficient.

DES (or AES) for encrypting actual data
RSA for encrypting corresponding DES session key
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Session Keys Establishment Protocols

Why Session Keys?

Limit available ciphertext for cryptanalysis

Limit exposure caused by the compromise of a session key

Usually Dyanamic: To avoid long-term storage of a large number of
secret keys (keys are created on-demand when actually required)

How to generate?

A shared secret is derived by the parties as a function of information
contributed by each, such that no party can predetermine the
resulting value. Ex. Diffie Hellman protocol.

One party cannot control the value of the established keys
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What is a good protocol for sharing a session key

1 Symmetry of users’ input
2 Session key freshness - assurance that key is new and not being reused
3 Efficiency of establishment and verification: total number of bits

transmitted (i.e., bandwidth used), number of messages exchanged,
complexity of computations by each party (speed), possibility of
precomputations to reduce on-line computational complexity.

4 No requirement of third party.
5 Non-repudiation of key
6 Perfect Forward Secrecy disclosure of a session key does not disclose

the session keys that were previously used.
7 Perfect Backward Secrecy: compromise of a session keys does not

compromise session keys that will be used
8 Key confirmation: One party is assured that a second party actually

possesses the session key. Possession of a key can be demonstrated by
producing a one-way hash value of the key or encryption of known
data with the key
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Derive the session key from a long term key

A and B exchange a long term Key Ksess that is then used to derive
a unique key for each message passed during the day

If an attacker can recover any message key

Attacker can recover all messages after the recovered key (complete
forward break)
If the encryption system is secure, then the attacker cannot break
previous keys (break-backwards protection)
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Key Confirmation Example

E: encryption by the public key
D: encryption with the private key

Key Confirmation: achieved by encrypting a known value

Mutual authentication

Key is fresh if K1 or K2 has not been used before
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Diffie-Hellman Key Exchange Protocol

Public System Parameters

p: is a large prime number
g: a generator of Z∗

p

Alice

Private key: a, 0 < a < p and GCD(a, p-1) = 1
Public key: ga

Bob

Private key: b, 0 < b < p and GCD(b, p-1) = 1
Public key: gb

a and b are secret and should be large
p and g are public
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Diffie-Hellman Key Exchange Protocol

K is the session symmetric key.

a and b are not sent in clear because they are secret.

Sending ga and gb is secure because it is not feasible to know a given
g and ga
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Diffie-Hellman Example
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Diffie-Hellman Summary
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Man-In-Middle Attack
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Summary Applications for Asymmetric Key Cryptography

Encryption/Decryption: provides confidentiality
The sender encrypts a message with the receivers public key.
The receiver decrypts the ciphertext with his/her private key.

Digital signature: provides authentication
The sender signs a message with its private key.
The receiver decrypts the ciphertext with the senders public key

Key exchange Two parties cooperate to exchange a session key
using their public keys (Diffie Hellman)
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Cryptographic hash function

A Cryptographic hash function is a hash function which takes an input (or
’message’) of any size and returns a fixed-size string of bytes.

The output is called ’hash value’, ’message digest’, ’digital fingerprint’,
’digest’ or ’checksum’.
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Cryptographic Hash Functions

What are the applications?

Message integrity checks

Digital signatures

Authentication.

Storing Password.

Core of the Blockchain technology.
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Hash Function Requirements

1 Ease of computation: given m, it is easy to compute H(m).

2 H() is a public function any one can calculate H(m) from m because
a key is not needed.

3 Efficient: does not need too much energy or computations, i.e.,
computational time is too short.

4 One-way property (preimage resistance): given a hash value Y=
H(m), it is computationally infeasible to find m given Y.

5 Randomness: Avalanche Effect

The only difference between the two messages is the extra space
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Hash Collision

Collision

Collision means two different messages generate the same hash value.

Since we have Many-to-one mapping collisions are unavoidable
however, finding collisions are difficult
The hash value of a message can serve as a compact representative
image of the message (similar to fingerprints).
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Hash Collision Resistance

Weak collision resistance (2nd preimage resistance)

Given an input m1, it is computationally infeasible to find a second input
m2 such that h(m2) = h(m1) m2 is called the preimage of m1.

Strong collision resistance (collision resistance)

It is computationally infeasible to find any two distinct inputs m1 and m2
such that h(m1) = h(m2).
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Bithday Paradox

One of the classical paradoxes that is used to determine the number
of hashes needed to get a collision.

Question: What are the chances that at least two people share a birthday
in a group of 23?

We can start with the chance that every possible pair has different birthday.

With 23 people we have 253 pairs:

C(23,2) = 23⋅22
2 = 253

The chance of 2 people having different birthdays is:

1 − 1

365
= 364

365
= .997260

The chance all pairs are different:
364

365

253

= 0.4995

The chance of at least two pairs are the same:

1 − 364
365 = 0.5005
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Birthday Attack

√
n is roughly the number you need to have a 0.5% chance of a

match with your space size is n.

It gets more accurate with large n√
365 is about 20. This comes into play in cryptography for the

birthday attack

For n bits hash,
√

2n = 2
n
2 randomly chosen messages, with high

probability, there will be a collision pair.

If n = 128 bits, expected number of steps = 264 (barely feasible)

Finding collisions a preimage needs 2n (infeasible for large n)
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Digital Signature and Hash Functions

Signatures: Signing the message digest rather than the message
often improves the efficiency because the message digest is usually
much smaller in size than the message.

Any change to the message in transit will result in a different message
digest, and the signature will fail to verify.
Suppose that Alice can find two messages x1 and x2 , with x1 ≠ x2 and
H(x1) = H(x2). Alice can sign x1 and later claim to have signed x2.
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Some Applications of Hash Functions

Origin authentication, non repudation and data integrity.

Confidentiality, Origin authentication, non repudation, and data integrity.
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Two very common hash functions

MD5 (Message Digest Algorithm):

MD5 produces as output a 128-bit ”fingerprint” or ”message digest”
of the input.
MD5 is much faster than SHA.
Wang and Yu (2004) found collisions for (full) MD5 in 239 steps
(about 15 minutes).
MD5 should not be used if collision resistance is required, but is
probably okay as a one-way hash function.
MD5 is still used today

SHA (Secure Hash Algorithm):

SHA-1 produces a 160-bit output called a message digest.
Collisions found for SHA1 in 2005
In 2001, NSA (National Security Agency) proposed variable
output-length versions of SHA-1. Output lengths are 256 bits
(SHA-256), 384 bits (SHA-384) and 512 bits (SHA-512).
SHA-256 used in blockchain.
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How hash are designed?

The following is a list of the commonly used operations:

Bitwise Operations: Not (!), Or (∣), And (&), Xor (∧),
Shift-Left/Right (<<, >>), Rotate-Left/Right (<<<, >>>)

Mathematical Operations: Addition (+), Multiplication (*)

Lookup Tables: List of prime numbers, List of magic numbers,
S-Box, P-Box

A common method for constructing collision resistant cryptographic hash
functions is known as the MerkleDamgard construction.
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How hash are designed?

MerkleDamgard construction

1 Initialise an internal state
2 Consume the message N-bits at a time (aka block size typically

32-bits, 64-bits, 128-bits etc..)
3 Perform a mixing operation with the current block and the internal

state
4 Update the internal state with the the result of [3]
5 If there are any remaining bytes in the message proceed to [2]
6 Finalize the internal state and return the hash value
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Elliptic Curve Cryptography (ECC)

ECC gives the same level of security with smaller key sizes than RSA
or Elgamal
General elliptic curve equation

y2 + b1xy + b2y = x3 + a1x
2 + a2x + a3

Example of Elliptic Curves
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Elliptic Curve Properties

Symmetry over the y-axis
if a line intersects two points in the curve it will always intersect a
third.

Closure Property
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Elliptic Curve Cryptosystem

Cryptographic Elliptic curves

y2 mod p = (x3 + ax + b) mod p

p is prime

a and b: non negative integers less than p and satisfy (4a3+27b2)
mod p ≠ 0
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Elliptic Curve Cryptosystem

If p is a large prime number

Zp is a finite field modulo q

Then an elliptic curve Ep(a,b) over Zp is the set of points (x, y) with
x, y ∈ Zp satisfy the following equation together with special point O,
called as point at infinity.

y2 mod p = (x3 + ax + b) mod p

where x, y, a, b ∈ Zq
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Elliptic Curve Cryptosystem

P+O = O+P = P
P + (-P) = O

ECC addition is analog of modulo multiply

ECC repeated addition is analog of modulo exponentiation
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Elliptic Curve Cryptosystem

Elliptic Curve Laws
For P = (x1,y1) ∈ Ep and Q = (x2,y2) ∈ Ep Then

1 -P = (x1,-y1)

2 P + Q = R = (x3,y3) where the coordinates of
the point R are defined by

x3 = λ2 − x1 − x2
y3 = λ(x1 − x3) − y1

where

λ =
⎧⎪⎪⎨⎪⎪⎩

y2−y1
x2−x1

if P ≠ Q
3x21+a
2y1

if P = Q
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How group points of Elliptic Curve can be computed?
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Elliptic Curve Summary

The equation of the elliptic curve is modulo prime p

x, y, a, b ∈ Zp

The points (x,y) on the Elliptic curve form an additive group with an
identity O (point at infinity) i.e., (x,y) ∈ Ep(a,b)
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Elliptic Curve cryptography (ECC) Security

Given P and aP, there is no way to compute a (Elliptic curve discrete
logarithm problem), but given P and a, it is easy to compute aP.

This is more difficult than factorization → can use much smaller key
sizes than with RSA for the same security level.

Shorter Key means less operations for encryption

With similar level of security, ECC offers significant computational
reduction
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Elliptic Curve Encryption/Decryption (Elgamal analogy)

1 Find an Elliptic Curve Ep(a,b) and a generator P
2 Alice and Bob share Ep(a,b) and P (i.e., public parameters)
3 Bob select nB ∈ Zp as Private Key and compute PB = nBP as Public

Key

Encryption
Alice selects a random k and Encrypt a message Pm as follows

Cm = (kP,Pm + kPB)
Decryption
Bob use his private key nB to decrypt back Pm as the following

Pm + kPB − nBkP = Pm + knBP − nBkP = Pm

Note

To recover the message, the attacker know P and kP, recovering k can
break the encryption (ECDLP).
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Key Exchange using ECC (Diffie Hellman Analog)

Find an Elliptic Curve Ep(a,b) and a generator P

Key Exchange between A and B

Bob selects nB ∈ Zp as Private Key and compute PB = nBP as Public
Key

Alice selects nA ∈ Zp as Private Key and compute PA = nAP as Public
Key

Alice generates a session key as KAB = nA × PB = nA × nB × P

Bob generates a session key as KBA = nB × PA = nB × nA × P = KAB
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Comparable Key Sizes for Equivalent Security

As with elliptic-curve cryptography in general, the bit size of the
public key believed to be needed for ECDSA is about twice the size of
the security level in bits.

A security level of 80 bits means that an attacker requires the
equivalent of about 280 operations to find the private key
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Bilinear Pairing

One way function but with some ”Homomorphic Properties”

Built on the elliptic curve crypto system.

Establish relationship between cryptographic groups.

Defination

A bilinear map takes an input from group G1 with generator g1 and an
input from group G2 with generator g2 and maps the result to Gt

e : G1 × G2 → Gt

Bilinear maps are called pairings because they associate pairs of elements
from G1 and G2 with elements in Gt .
Note: G1 and G2 are additive groups while Gt is multiplicative group

Dr. Mahmoud Nabil (NCAT) March 11, 2020 144 / 170



Basic Cryptographic Primitives Bilinear Pairing

Bilinear Pairing Properties
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Other Notations

Sometimes G1 and G2 is written additively

In this case P, Q normal names for elements of G1 and G2
Bilinear property expressed as P ∈ G1, Q ∈ G2, and ∀ a, b ∈ Z,

e(aP , bQ )= e(bP , aQ ) = e(P, abQ) = e(abP, Q) = abe(P,Q)

Sometimes G1 and G2 are considered to be the same group G. In this
case, the pairing is assumed to be symmetric.

In litreature usually this notation of both G1 and G2 are written
multiplicatively is used.

Existing algorithms to compute bilinear pairing Weil and Tate Pairing
Algorithm. Very Complex !
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Most Common New Problems

Some new problems have been defined and assumed hard in the new bilinear
context. (Out of the Course Scope)
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Application of Bilinear Pairing

Secure dot product. Given two encrypted vectors a and b calculate
the encryption of their dot product. On Board

One level Homomorphic Addition and Multiplication on encrypted
data.

Dot product is the basic operation for evaluating a deep learning
model.

Bilinear pairing is used for privacy preserving inference on encrypted
data here2. Application on MNIST dataset with 97.5% accuracy.

2https://eprint.iacr.org/2018/206.pdf
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Secure Multi-Party Computation

It is a subfield of cryptography with the goal of creating methods for parties
to jointly compute a function over their inputs while keeping those inputs
private.

Note that:

Yao’s Millionaires’ problem 1982. Can be solved with Arithematic or
Garbeled Circuits.
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Yao’s Millionaires’ Problem Solution

Alice Bob

a0 b0 a1 b1

+ +

×

Alice Bob

a0 b0 a1 b1

1 Binary (Garbeled) Circuits Protocol.

2 Arithematic Circuits Protocol.
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Garbeled Circuits

Alice and Bob wants to
evaluate a circuit on their
private inputs wihout revealing
them. e.g., who is richer?

1 Assume a0, a1 are the inputs
for alice while b0,b1 are the
inputs for Bob.

2 Alice will be called the
Generator.

3 Bob will be called the
Evaluator.

4 By executing the following
protocole, both alice and
bob will evalute the circuit
in a secure manner.

Alice Bob

a0 b0 a1 b1
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Garbeled Circuits
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1 Assume a0, a1 are the inputs
for alice while b0,b1 are the
inputs for Bob.

2 Alice will be called the
Generator.

3 Bob will be called the
Evaluator.

4 By executing the following
protocole, both alice and
bob will evalute the circuit
in a secure manner.

Alice Bob
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Garbeled Circuits

Lets consider the secure
evaluation for only one gate
G1. Alice generate a garbeled
table for G1 as follows.

1 All wires are assigned lables
that corresponds to random
nounces.

2 w0,w1,w4 are the labels for
G1.

3 Each wire label can have
two values. e.g., w0

0 ,w
1
0 .

Alice Bob

w0 w1

G1

w2 w3

w4 w5

w6
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Garbeled Circuits

Alice generate garbeled
table for G1 as follows

w0 w1 w4

0 0 0
0 1 0
1 0 0
1 1 1

Table: AND gate logic table.

⇒

Garbeled Table

Encw0
0 ,w

0
1
(pad ∣∣w0

4 )
Encw0

0 ,w
1
1
(pad ∣∣w0

4 )
Encw1

0 ,w
0
1
(pad ∣∣w0

4 )
Encw1

0 ,w
1
1
(pad ∣∣w1

4 )

..

⎫⎪⎪⎬⎪⎪⎭
Permuted

Note that:

The garbeled table contains encrypted values, meaningless to anyone
except Alice.
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Garbeled Circuits

Evaluator Bob will get the garbeled table for G1 and the input for
Alice at wire w0 (assume it is w0

0 ). Note that w0
0 is meaningless to

Bob.

Assume Bob input is w1
1 , Bob needs to get this value without letting

Alice know it. How?.

Using Oblivious Transfer
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Oblivious Transfer 3

Alice Generator (e,d) Bob Evaluator

Choose two random values x0, x1
Send x0, x1

Bob should choose x1

Calculate v = (x1 + r e)mod n

Send v

k0 = (v − x0)dmod n = garbage

k1 = (v − x1)dmod n = r

ŵ0
1 = w0

1 + k0

ŵ1
1 = w1

1 + k1

Send ŵ0
1 , ŵ

1
1

Calculate w1
1 = ŵ1

1 − r

3https://arxiv.org/ftp/arxiv/papers/1705/1705.08963.pdf
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Arithemtic Circuit

Two or more parties can evaluate any function on their private inputs
using secret sharing.

SDPZ is an Multi-Party-Computation MPC protocol allowing joint
computation of arithmetic circuits.

Known as SPDZ (’speedz’)

SPDZ is used for privacy-preserving deep-learning library called
tensorflow encrypted4.

4https://github.com/tf-encrypted/tf-encrypted
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What is secret sharing?

Suppose a field element a ∈ Zp.

Split a up at random (uniformly) into two pieces, a = a1 + a2,

Give party P1 the value a1 and P2 the value a2.

Neither party knows the value a, but together they can recover it.

We will write < a > to mean that the value a is secret-shared between
all parties (i.e. for each i, party Pi has ai , where ∑ ai = a)

We call this method as additive secret sharing.
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Overview of secret-sharing MPC

1 Providing Inputs: The parties first secret-share their inputs; i .e.
input x i is shared so that ∑j x

i
j = x i and party Pj holds x ij (and Pi

which provides input is included in this sharing, even though it knows
the sum).

2 Circuit Evaluation: The parties perform additions and
multiplications on these secret values by local computations and
communication of certain values. By construction, the result of
performing an operation is automatically shared amongst the parties
(i.e. with no further communication or computation).

3 Opening the Result: Finally, the parties ’open’ the result of the
circuit evaluation. This last step involves each party sending their
’final’ share to every other party (and also performing a check that no
errors were introduced by the adversary along the way).
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Providing Inputs

1 Pi with x i

2 Split x i up at random (uniformly) into n pieces ∑j x
i
j = x i .

3 Send x ij to Pj and keep x ii
4 Thus we have turned x i into < x i >
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Circuit Evaluation

Suppose we want to compute some arithmetic circuit on our data;
that is, some series of additions and multiplications.

Our goal is to apply the addition and the multiplications on the
shared x i (i.e., < x i >)
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Addition

Suppose we want to compute < a + b > given some < a > and < b >

Party Pi has ai and bi , each party can locally compute ai+bi , and hence,
since ∑i ai +∑i bi = ∑i(ai + bi), they obtain a secret sharing < a + b > of
the value a+b.
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Multiplication by Constant

Suppose we want to compute < αa > given some public value α and < a >

Each party multiplies its share by the public value α, then since ∑i αai =
α∑i ai = αa the parties obtain a secret sharing < αa > of the value αa.

Addition and multiplication by public constant can be done locally by each
party
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Multiplication

Suppose we want to compute < xy > given some < x > and < y >:

In 1991, Donald Beaver observed that if we already have three secret-shared
values, called a triple, < a >, < b > and < c > such that c = ab. Then we
can compute < xy >. How?

1 Each party broadcasts xi − ai and yi − bi , then each party Pi can
compute x-a and y-b (so these values are publicly known)

2 Each party compute

zi = ci + (x − a)bi + (y − b)ai
3 Additionally, one party (chosen arbitrarily) adds on the public value

(x-a)(y-b) to their share.

Summing all the shares up, the parties get

∑i zi = c + (x − a)b + (y − b)a + (x − a)(y − b) = xy
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Notes on the multiplication triplets

We need lots of triples as much as the number of multiplication we
have in our circuit.

They are completely independent of the circuit to be evaluated.

We can generate these triples at any point prior to evaluating the
circuit.

The values of a, b and c are not known by any parties when
generated - each party only knows its share.

A trusted party can supply these triplets OR some cryptographic
protocols can be used to generate them.
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MACs

MACs are used to protect the integrity of the shared values against
modification of any party

Before any preprocessing computation takes place, the parties agree
on some MAC key α with which they MAC all their data and which
they secret-share amongst themselves so that no individual party
knows the MAC key.

This MAC key is used to MAC all the data in the circuit. For each
secret-shared value, there is also a secret-shared MAC on that value.

After the circuit has been evaluated, the parties open the secret
corresponding to the circuit output and also the MAC on it, and
check that the MAC is correct. If an actively corrupt party cheats at
any point in the circuit evaluation, the final MAC check reveals this
has happened. Note that this means the parties could be computing
on invalid data.
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Common Cryptographic Libraries

Oblivious C https://oblivc.org/main/

Tensorflow Encrypted https://github.com/tf-encrypted/tf-encrypted

OpenSSL http://www.openssl.org/

Cryptlib http://www.cs.auckland.ac.nz/ pgut001/cryptlib/

Crypto++ http://www.cryptopp.com/

BSAFE http://www.rsa.com/node.aspx?id=1204

MIRACL(Multiprecision Integer and Rational Arithmetic C/C++
Library) http://www.shamus.ie

Pycharm
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Questions
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