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Why Collaborative Learning?
● Privacy of user data
● Access to more data with 

more variety
● Collaboration among 

organisations eg. hospitals
● Taking advantage of the 

current boom in edge 
computing eg. sensor 
networks, mobile phones

● Reduce data communication 
volume

Introduction

6image: https://blogs.nvidia.com/blog/2019/10/13/what-is-federated-learning/
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● Map input x to layers of features 
h, then to output y connected by 
W

● Learn parameters to minimize 
loss:

W = argminwL(x,y)

● Gradient descent on parameters:
○ In each iteration, train on a 

batch
○ Update W based on gradient of 

L

Gradients reveal information about 
the data

y = Female

hl+
1

hl

h1

W1

Wl

x =

Wx



Security Vulnerabilities of 
Federated Learning
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Poisoning Attacks Inference  Attacks
Membership 
Inference
Determine whether a 
particular data sample 
was used in training
Attribute Inference
Identify properties that 
hold true for certain 
subsets of data

https://medium.com/datadriveninvestor/an-overview-of-federated-learning-8a1a62b0600d
Orekondy, T., Schiele, B., & Fritz, M. Gradient-Leaks: Understanding and Controlling Deanonymization in 
Federated Learning.

Model Inversion
Identify 
properties/features 
that characterize a 
class
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new attack 
surface

Model updates leak info about 
training data

Predict gender

Not correlated to 
learning task

eg. race
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Attacks demonstrated in this paper :

● Attribute Inference (Property Inference)

● Membership Inference

● Poisoning Attacks (Active Property Inference)



Threat Model
Proposed Attack Models

● Assume K participants in training ML model. 
K>=2

● One participant is an adversary
● Adversary’s Goal: infer information about 

training data of other participants

L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting unintended feature leakage in collaborative 
learning,” in 2019 IEEE Symposiumon Security and Privacy (SP), pp. 691–706, IEEE, 2019.

Difference between consecutive snapshots of joint 
model:

Aggregated updates from all participants except 
adversary:

Adversary  has 
WHITE-BOX access 
to model updates!



Threat Model
Proposed Attack Models

Two-Party
● K = 2
● One participant is an adversary
● Adversary’s Goal: infer information 

about training data of the other 
participant

Multi-Party
● K >  2
● One participant is an adversary
● Adversary’s Goal: infer information 

about training data of the all other 
participants

● Difficult to trace inferred information to 
a specific target participant
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Leakage from gradients
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Leakage from gradients
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Leakage from gradients
y = Female

hl+
1

hl

h1

W1

Wl

x =

Wx

Gradient Descent:
Minimize Loss Function

chain 
rule

chain 
rule

● h = features of x learned to 
predict y 

● h leaks features of x which 
are uncorrelated with y
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Leakage from embedding layer
● Embedding: a mapping of a 

discrete — categorical — variable to 
a vector of continuous numbers

Can be used for:
● Dimensionality reduction
● Data visualization
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Leakage from embedding layer ● Embedding layer:  a hidden 
layer used in neural networks 
to reduce dimensionality of 
high-dimension input

● input is non-numerical and 
discrete (categorical), and 
sparse (eg. natural language text, 
or movies)

Sample 1: {1, 0, 0, 0, ..., 1, 
1, 1}
Sample 2: {1, 0, 0, 1, ..., 0, 
1, 0}https://developers.google.com/machine-learning/crash-course/embeddings/video-lecture
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Leakage from embedding layer
During training:
● Gradient matrix between input 

and embedding layer is also 
sparse

● Gradients are only updated for 
input features that are true (1).

● Features that are not present 
(0) have a gradient of zero

● The sparsity of the gradients 
can reveal which data was used 
in the input for training.

● Hence: Membership 
Inference!

https://developers.google.com/machine-learning/crash-course/embeddings/video-lecture
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Use 
supervised 
learning!

 

if adversary has examples 
of data with these 
properties

e.g. gender and facial IDs

How to infer 
properties from 

observed updates?

leaks properties of x 
which are 

UNCORRELATED with y
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Inferring properties from observing gradient updates 

● Assume adversary has auxiliary data consisting of data points sampled from same class 
as target participant 

● Part of the auxiliary data should have the property of interest 
● Part of the auxiliary data should NOT have the property of interest 
● Use batches of this data to train adversary’s local model and update the global model
● For every two consecutive snapshots of the global model, infer the parameter updates 

(gradients/weights) of all other participants combined:
● Label updates as either having property or not (prop/nonprop) based on what data the 

adversary used to train the local model for that round   
● Use labeled updates to train a binary classifier for predicting if an update contains the 

property or not
● Apply this classifier for property inference                                                  
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Aux data 
labeled 
with 
property
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Server

Inferring properties from observing gradient updates 
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Server
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Aux data 
labeled 
with 
property

Property 
Classifier
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d 

update
s

Labele
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Inferring properties from observing gradient updates 
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Applying trained property classifier in attack 
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Property 
Classifier

38

   

…

Server

  iter 3

infer 
updat

es

-
infer 
updat

es

-
yes/no

Applying trained property classifier in attack 
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Active Property Inference 
● Uses multi-task learning to make property inference attack more 

powerful
● A kind of poisoning attack 
What is multi-task learning?
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Active Property Inference 
In this work: 

hl+
1

hl

h1

W1

Wl

x =

Wx

y = Main 
Task

p = 
Property

● Double optimization problem

● Adversary updates global model with

● Causes global model to learn separable 
representations for data with and without 
the property of interest

● Enhances property inference 

Adversary performs 
multi-task learning of 
both the main task and 
the property of interest 
on his local model
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Attacks Model Architecture

Two-Party Multi-Party (4 to 30)

Passive Property Inference ✓ ✓
Active Property Inference ✓
Temporal Inference ✓ ✓
Membership Inference ✓
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Dataset Type of Data # of Records Main Tasks Inference 
Tasks

LFW images 13.2k gender/smile/age/
eyewear/race/hair

race/eyewear

FaceScrub images 18.8k gender identity

PIPA images 18.0k age gender

CSI written essays 1.4k sentiment membership/regio
n/
gender/veracity

FourSquare locations 15.5k gender membership

Yelp-health reviews 17.9k review score membership/
doctor specialty

Yelp-author reviews 16.2k review score author



Property Classifier Models
Experiments
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● Conventional ML models (not neural networks)

● Yelp dataset => Logistic Regression

● All other datasets => Random Forest (after experimenting 
with logistic regression, gradient boosting, and random forests)
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Infer Property (Two-Party 
Experiments)

44

Target 
label Property

Main task 
and 

property 
are not 

correlated!

Labeled Faces in the Wild: 
Participant trains on facial images with certain 
attributes

Attack 
AUC

44

Correlati
on
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Fractional Property Inference  (Two-Party 
Experiments)

4545
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Infer Occurrence (Two-Party 
Experiments)FaceScrub: target=gender, property=facial IDs
Participant trains on faces of different people in different 
iterations

Infer when images of 
a certain person 

appear and disappear 
in training data
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Infer Occurrence (Two-Party 
Experiments)PIPA: target=age, property=same gender or mixed gender
Participant trains on images with groups of people in different 
iterations

Infer when images 
contain people of the 

same gender or 
mixed gender
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Active Attack (Two-Party 
Experiments)

Adversary can 
actively bias the 

model to leak 
property by sending 

crafted updates!

Adversary uses multi-task 
learning to create a model that 
• Predicts task label
• Predicts property

FaceScrub: target=gender, 
property=facial IDs 

Strength of 
active attack 
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Active Attack (Two-Party 
Experiments)FaceScrub: target=gender, 

property=facial IDs 
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Membership Inference (Two-Party 
Experiments)Yelp-health: target=review score, 

inference=membership ● Create a unique test consisting of a group 
of features that represents unique 
sample/member you want to infer (test bag 
of words (BoW))
Example: 

                                 Sample: {1, 0, 0, 0, ..., 1, 1, 
1}

● After each batch of training infer all the 
features present (non-zero gradients in 
embedding layer) in the batch (batch BoW)

● If test BoW is a subset of batch BoW, then 
the test BoW has been inferred as a 
member used in the current batch of 
training
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Membership Inference (Two-Party 
Experiments)FourSquare: target=gender, 

inference=membership 
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Property Inference (Multi-Party 
Experiments)
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Infer Occurrence (Multi-Party 
Experiments)
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Load Data

Split Data among participants

Perform collaborative learning 
with adversary using aux data 

to label updates

Use labeled updates to train 
and test property classifier

Libraries
● Theano for deep learning
● Lasagne for deep learning
● Scikit_Learn for conventional ML 

models (Property classifier) 

Code Structure

Dataset and Model Architecture
● LFW
● Two-Party
● iterations: 3000
● learn rate: 0.01

https://github.com/csong27/property-inference-collaborative-ml
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Sharing fewer gradients 

● Theory: the fewer the 
parameters/gradients shared by 
participants, the less information 
can be leaked

● Demonstrated in [1]

● Comes with the cost of reduced 
accuracy of the global model

[1]   R. Shokri and V. Shmatikov.  Privacy-preserving deep learning. InCCS , 2015.

Property inference attacks against CSI dataset. 
Main Task: sentiment

* does not show accuracy of actual model for the 
main task
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Dimensionality Reduction 

● Theory: for sparse input space, use 
a smaller subset of the larger input 
space (e.g the most frequent 
features). Smaller input space 
should leak less information

● Comes with the cost of reduced 
accuracy of the global model

Membership inference attacks against CSI and 
FourSquare datasets. 
Main Task: gender



Countermeasures
Countermeasures

59

Dropout 

● Theory: regularization technique to 
reduce overfitting by randomly 
deactivating links between neurons

● Reduces number of gradients

● Comes with the cost of reduced 
accuracy of the global model

Property inference attacks against CSI dataset. 
Main Task: sentiment
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Participant or Record Level Differential Privacy (DP) 

● Theory: add random noise to participant datasets/individual samples to make 
reverse engineering difficult

● Comes with the cost of reduce accuracy of joint model

● Record level DP can prevent membership inference, but not individual property 
inference

● Participant level DP can limit the success of all attacks, but it needs a large number 
of participants for training to converge and get a reasonable accuracy [2]

[2]   H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang. Learning differentially private language 
models without losing accuracy. In ICLR , 2018..
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Artificial Multiplication of Participants 

● Theory: multi-party property inference attack accuracy reduces as number of 
participants increase. 

● Multiply number of participants even if not needed; 

● Split data across participants where possible 

[2]   H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang. Learning differentially private language 
models without losing accuracy. In ICLR , 2018..



Limitations
● Availability of auxiliary data (some may be easier to find than others)

● Number of participants

● Undetectable properties

● Attribution of inferred properties (trivial in two-party; not possible in 
multi-party)

Limitations
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Conclusion
● Property and membership attacks on collaborative learning have 

been demonstrated
● Uncorrelated properties to main task can be leaked through 

model/gradient updates
● Active attacks can make property inference even more powerful
● Countermeasures such as fewer gradient sharing, dimensionality 

reduction, dropout are not very effective
● Collaborative learning has security vulnerabilities; more research is 

required to come up with effective countermeasures

Conclusion
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