

Exploiting Unintended Feature Leakage in Collaborative Learning

(Luca Melis, Congzheng Song, Emiliano De Cristofaro, Vitaly Shmatikov) Presented at: 40th IEEE Symposium on Security and Privacy (Oakland), 2019

Presented by: Ahmed Yiwere

in

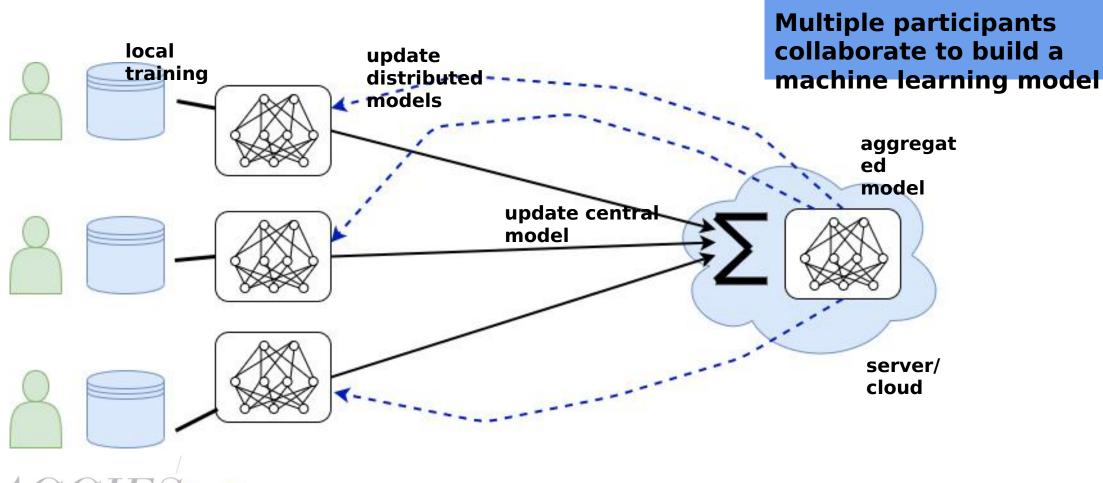
ECEN 885002: Machine Learning in Cyber Security (Professor: Dr. Mahmoud N. Mahmoud)

Outline

- Introduction
- Proposed Attack Models
- Experiments
- Results and Analysis
- Code Demonstration
- Countermeasures
- Limitations
- Related Work
- Conclusion

What is Collaborative Learning?

What is Collaborative Learning?



What is Collaborative Learning?

Algorithm 1 Parameter server with synchronized SGD

Server executes:

```
Initialize \theta_0

for t=1 to T do

for each client k do

g_t^k \leftarrow \text{ClientUpdate}(\theta_{t-1})

end for

\theta_t \leftarrow \theta_{t-1} - \eta \sum_k g_t^k \Rightarrow \text{synchronized gradient updates}

end for
```

ClientUpdate(θ):

Select batch b from client's data **return** local gradients $\nabla L(b; \theta)$

Algorithm 2 Federated learning with model averaging

Server executes:

```
Initialize \theta_0

m \leftarrow max(C \cdot K, 1)

for t = 1 to T do

S_t \leftarrow (random set of m clients)

for each client k \in S_t do

\theta_t^k \leftarrow \text{ClientUpdate}(\theta_{t-1})

end for

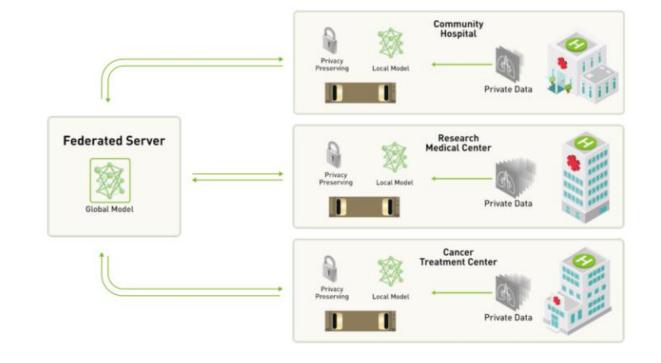
\theta_t \leftarrow \sum_k \frac{n^k}{n} \theta_t^k > averaging local models
end for
```

ClientUpdate(θ):

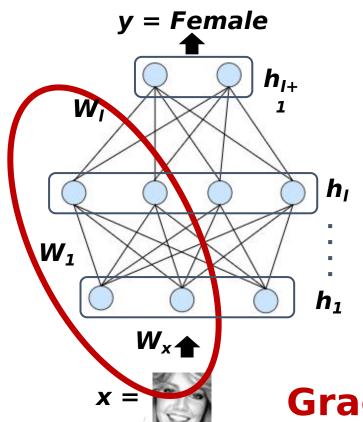
```
for each local iteration do
for each batch b in client's split do
\theta \leftarrow \theta - \eta \nabla L(b; \theta)
end for
end for
return local model \theta
```


Why Collaborative Learning?

- Privacy of user data
- Access to more data with more variety
- Collaboration among organisations eg. hospitals
- Taking advantage of the current boom in edge computing eg. sensor networks, mobile phones
- Reduce data communication volume



Deep Learning Overview



- Map input x to layers of features **h**, then to output **y** connected by W
- Learn parameters to minimize loss:

$$W = argmin_w L(x,y)$$

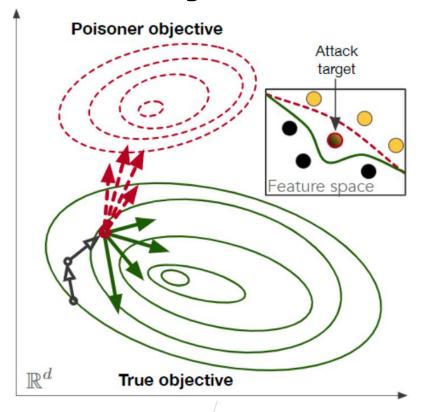
- Gradient descent on parameters:
 - In each iteration, train on a

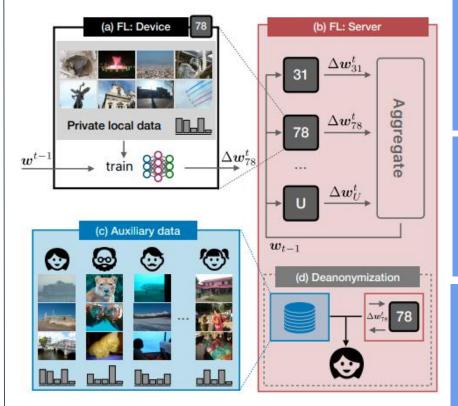
Gradients reveal and formation about the data

Update W based on gradient of

Security Vulnerabilities of Finderated Learning

Inference Attacks





Membership Inference

Determine whether a particular data sample was used in training

Attribute Inference

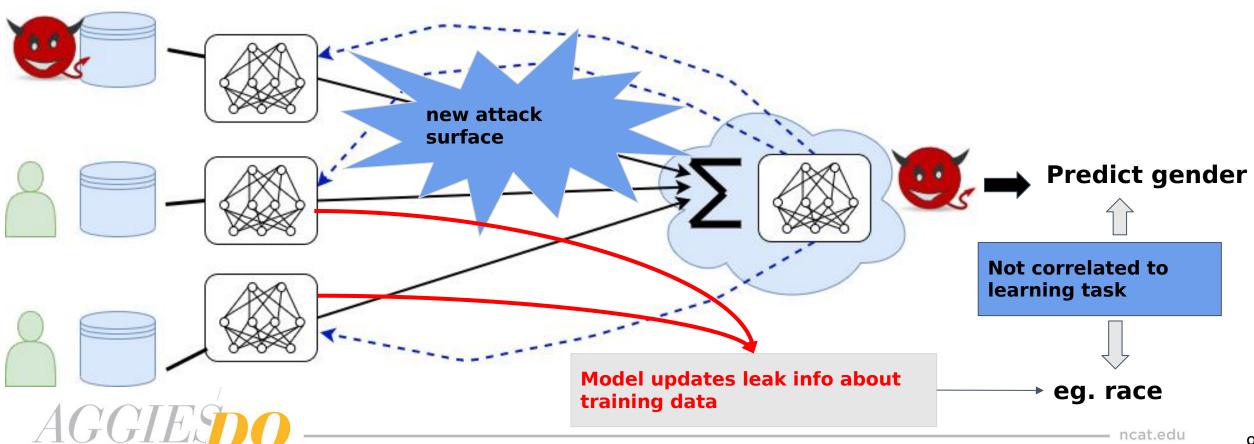
Identify properties that hold true for certain subsets of data

Model Inversion

Identify properties/features that characterize a class

Introduction

Overview of The Paper Goal: What can be inferred about a participant's training dataset from the model updates revealed during collaborative model training?



Introduction

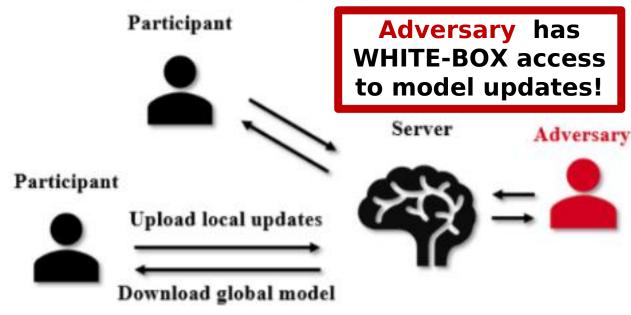
Overview of The Paper
Goal: What can be inferred about a participant's training dataset from the model

updates revealed during collaborative model training?

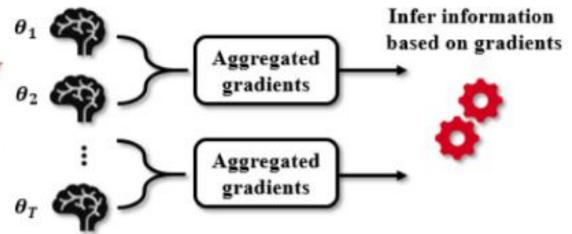
Attacks demonstrated in this paper :

- Attribute Inference (*Property Inference*)
- Membership Inference
- Poisoning Attacks (*Active Property Inference*)

Threat Model



Save snapshots of joint model and calculate the difference



- Assume K participants in training ML model.
 K>=2
- One participant is an adversary
- Adversary's Goal: infer information about training data of other participants

Difference between consecutive snapshots of joint model:

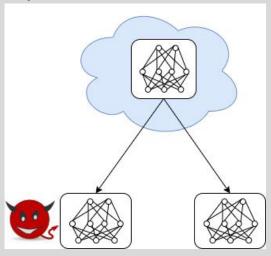
$$\Delta \theta_t = \theta_t - \theta_{t-1} = \sum_k \Delta \theta_t^k$$

Aggregated updates from all participants except adversary: $\Delta \theta_t - \Delta \theta_t^{\rm adv}$

Threat Model

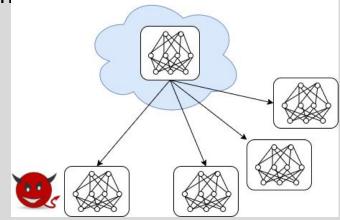
Two-Party

- \bullet K=2
- One participant is an adversary
- Adversary's Goal: infer information about training data of the other participant



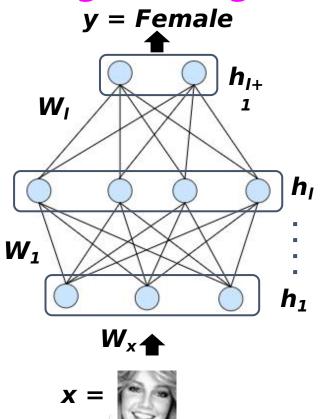
Multi-Party

- \bullet K > 2
- One participant is an adversary
- Adversary's Goal: infer information about training data of the all other participants
- Difficult to trace inferred information to a specific target participant



Leakage from model updates

Leakage from gradients



Forward Pass

$$h_1 = x * W_x$$

 $h_2 = h_1 * W_1 = (x * W_x) * W_1$

$$h_{l} = h_{l-1} * W_{l-1} = (((x * W_{x}) * W_{1}) * W_{2} * \dots) * W_{l-1}$$

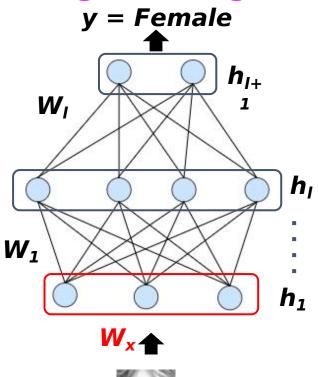
$$h_{l+1} = h_{l} * W_{l} = ((((x * W_{x}) * W_{1}) * W_{2} * \dots) * W_{l-1}) * W_{l})$$

$$y = activation(h_{l+1})$$

$$y = activation((((x * W_x) * W_1) * W_2 * ...) * W_{l-1}) * W_l)$$

Leakage from model updates

Leakage from gradients



Forward Pass

$$h_1 = x * W_x$$

$$h_2 = h_1 * W_1 = (x * W_x) * W_1$$

$$h_{l} = h_{l-1} * W_{l-1} = (((x * W_{x}) * W_{1}) * W_{2} * ...) * W_{l-1}$$

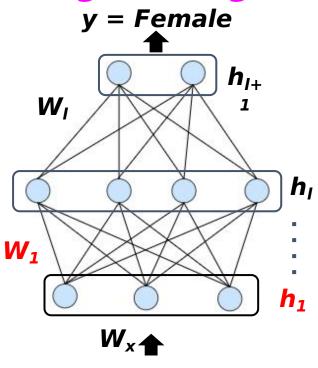
$$h_{l+1} = h_{l} * W_{l} = ((((x * W_{x}) * W_{1}) * W_{2} * ...) * W_{l-1}) * W_{l})$$

$$y = activation(h_{l+1})$$

$$y = activation((((x * W_x) * W_1) * W_2 * ...) * W_{l-1}) * W_l)$$

Leakage from model updates

Leakage from gradients



Forward Pass

$$h_1 = x * W_x$$

$$h_2 = h_1 * W_1 = (x * W_x) * W_1$$

$$h_{l} = h_{l-1} * W_{l-1} = (((x * W_{x}) * W_{1}) * W_{2} * \dots) * W_{l-1}$$

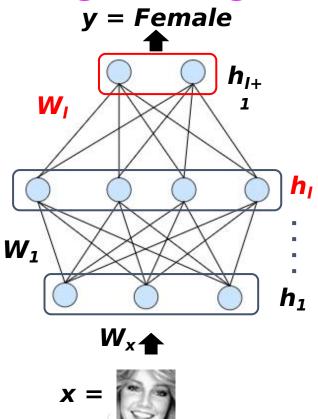
$$h_{l+1} = h_{l} * W_{l} = ((((x * W_{x}) * W_{1}) * W_{2} * \dots) * W_{l-1}) * W_{l})$$

$$y = activation(h_{l+1})$$

$$y = activation((((x * W_x) * W_1) * W_2 * ...) * W_{l-1}) * W_l)$$

Leakage from model updates

Leakage from gradients



Forward Pass

$$h_1 = x * W_x$$

 $h_2 = h_1 * W_1 = (x * W_x) * W_1$

:

$$h_l = h_{l-1} * W_{l-1} = (((x * W_x) * W_1) * W_2 * \dots) * W_{l-1}$$

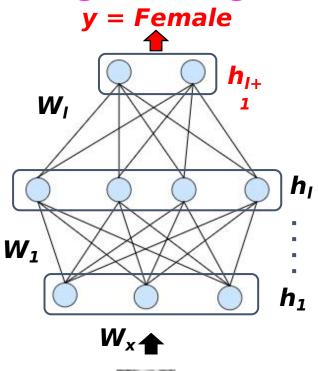
$$h_{l+1} = h_l * W_l = ((((x * W_x) * W_1) * W_2 * \dots) * W_{l-1}) * W_l)$$

 $y = activation(h_{l+1})$

 $y = activation((((x * W_x) * W_1) * W_2 * ...) * W_{l-1}) * W_l)$

Leakage from model updates

Leakage from gradients



Forward Pass

$$h_1 = x * W_x$$

 $h_2 = h_1 * W_1 = (x * W_x) * W_1$

$$h_{l} = h_{l-1} * W_{l-1} = (((x * W_{x}) * W_{1}) * W_{2} * \dots) * W_{l-1}$$

$$h_{l+1} = h_{l} * W_{l} = ((((x * W_{x}) * W_{1}) * W_{2} * \dots) * W_{l-1}) * W_{l})$$

$$y = activation(h_{l+1})$$

$$y = activation((((x * W_x) * W_1) * W_2 * ...) * W_{l-1}) * W_l)$$

h leaks features of x which

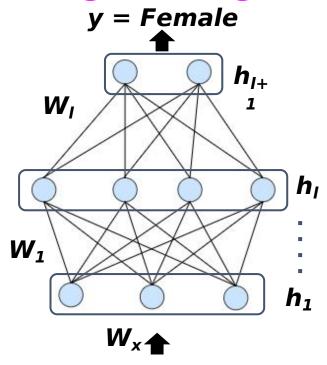
are uncorrelated with y

predict y

Leakage from model updates

h = features of x learned to

Leakage from gradients



 $x = \bigcirc$

Gradient Descent:

Minimize Loss Function

 $Loss, L \implies deviation(y, y_{true})$

$$\frac{\partial L}{\partial W_l} = \left(\frac{\partial L}{\partial y} \cdot \frac{r \partial g}{\partial h_{l+1}} \cdot \left(\frac{\partial h_{l+1}}{\partial W_l}\right)\right) = \frac{\partial L}{\partial h_{l+1}} * h_l$$

Example: chain

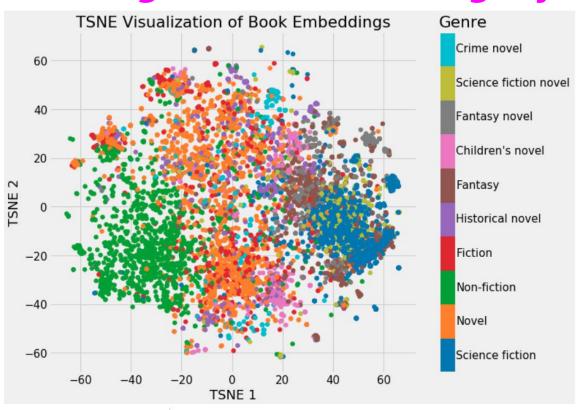
$$\frac{\partial L}{\partial W_1} = \left(\frac{\partial L}{\partial y} \cdot \frac{\text{rude}}{\partial h_{l+1}} \cdot \frac{\partial h_{l+1}}{\partial W_l} \cdot \frac{\partial W_l}{\partial h_l} \cdot \frac{\partial W_l}{\partial W_{l-1}} \cdots \frac{\partial W_2}{\partial h_2} \left(\frac{\partial h_2}{\partial W_1} \right) \right) = \frac{\partial L}{\partial h_2} * h_1$$

Update Weight

$$W_1^t = W_1^{t-1} - \eta \cdot \frac{\partial L}{\partial W_1}$$

Leakage from model updates

Leakage from embedding layer



 Embedding: a mapping of a discrete — categorical — variable to a vector of continuous numbers

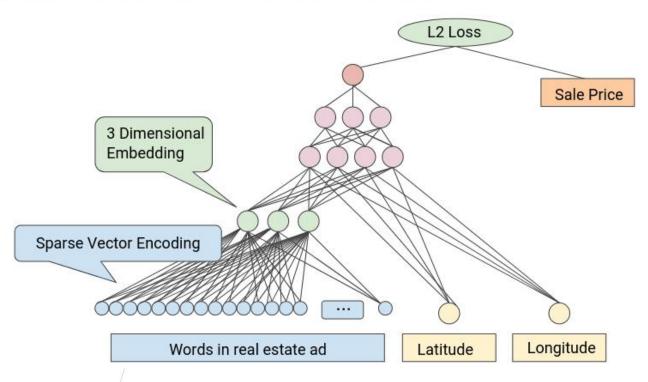
Can be used for:

- Dimensionality reduction
- Data visualization

Leakage from model updates

Leakage from embedding layer

Regression problem to predict home sales prices:



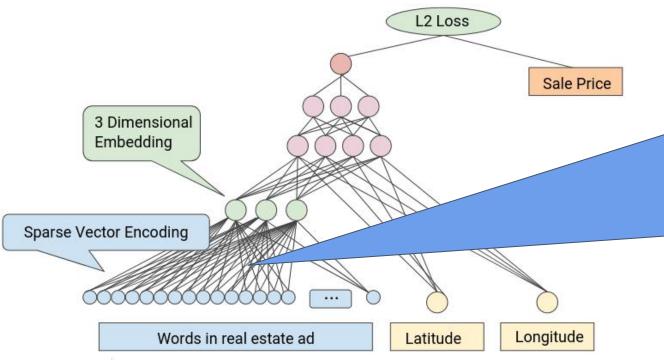
- **Embedding layer:** *a hidden* layer used in neural networks to reduce dimensionality of high-dimension input
- input is non-numerical and discrete (categorical), and

Sample 1: {1, 0, 0, 0, ..., 1, 1, 1}

Leakage from model updates

Leakage from embedding layer

Regression problem to predict home sales prices:



During training:

- Gradient matrix between input and embedding layer is also sparse
- Gradients are only updated for input features that are true (1).
- Features that are not present(0) have a gradient of zero
- The sparsity of the gradients can reveal which data was used in the input for training.
- Hence: Membership Inference!

21

Leakage from model updates

Model updates from gradient descent:

• Gradient updates reveal **h**:

$$y = W \cdot h, \qquad \frac{\partial L}{\partial W} = \frac{\partial L}{\partial y} \cdot \frac{\partial y}{\partial W} = \frac{\partial L}{\partial y} \cdot h$$

• h = features of x learned to predict y

leaks properties of x
which are
UNCORRELATED with y
e.g. gender and facial IDs

How to infer properties from observed updates?

if adversary has examples of data with these properties

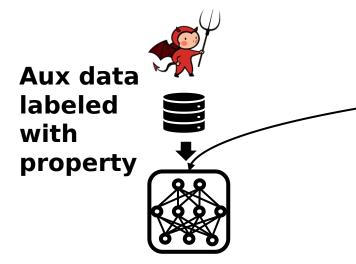
Use supervised learning!

Property Inference Attacks

- ullet Assume adversary has auxiliary data consisting of data points sampled from same class as target P^{adv} pant
- ullet Part of the auxiliary data should have the property of i D_{prop}^{adv} :+
- ullet Part of the auxiliary data should **NOT** have the property of ir $D_{nonprop}^{adv}$
- Use batches of this data to train adversary's local model and update the global model
- For every two consecutive snapshots of the global model, infer the parameter updates (gradients/weights) of all other participants con $\Delta\theta_t = \theta_t \theta_{t-1} = \sum_k \Delta\theta_t^k \rightarrow \Delta\theta_t \Delta\theta_t^{\rm adv}$
- Label updates as either having property or not (*prop/nonprop*) based on what data the
 adversary used to train the local model for that round
- Use labeled updates to train a binary classifier for predicting if an update contains the property or not
- Apply this classifier for property inference

Property Inference Attacks

Inferring properties from observing gradient updates



iter 1

Server

global model

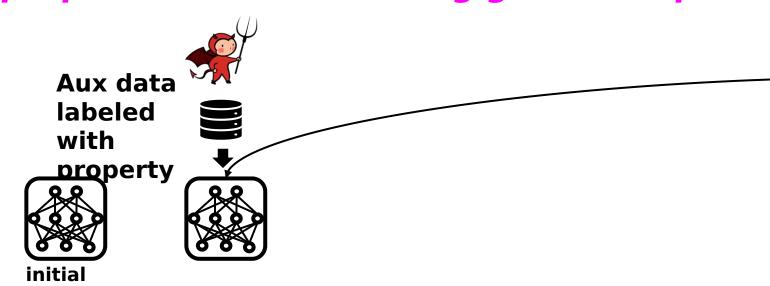
parameters

Proposed Attack Models

Property Inference Attacks

iter 1

Inferring properties from observing gradient updates



Server

global model

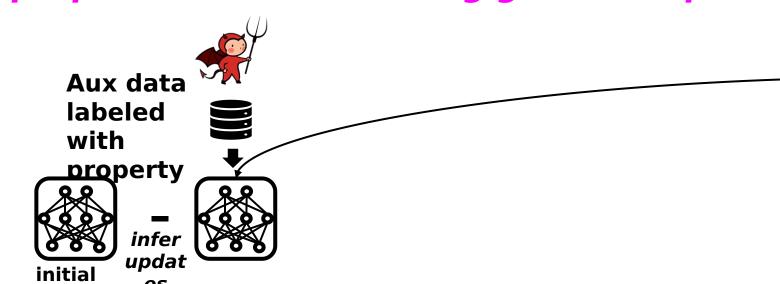
parameters

Proposed Attack Models

Property Inference Attacks

iter 1

Inferring properties from observing gradient updates



Server

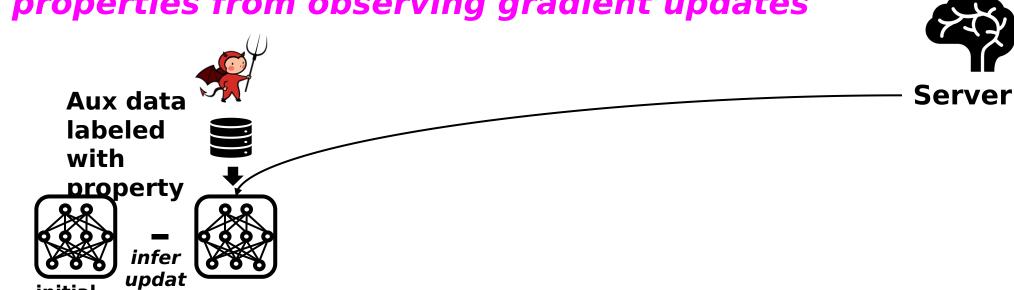
global model

parameters

Proposed Attack Models

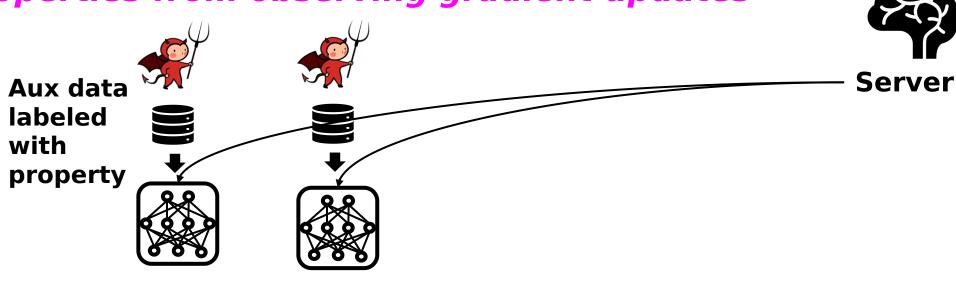
Property Inference Attacks

Inferring properties from observing gradient updates



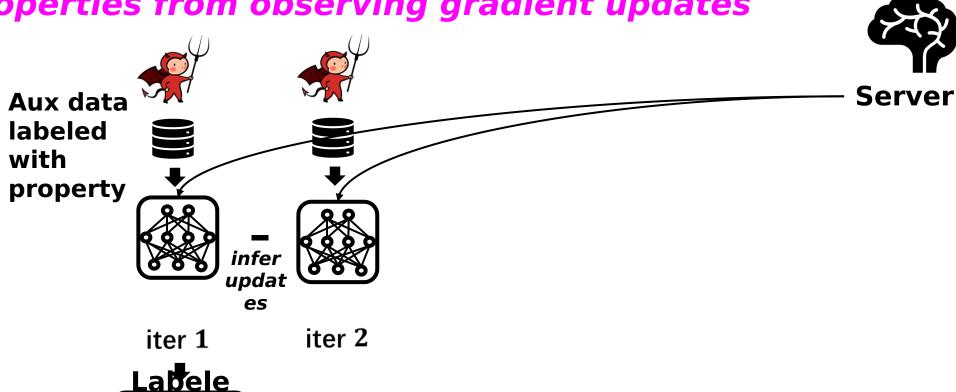
iter 1

Property Inference Attacks

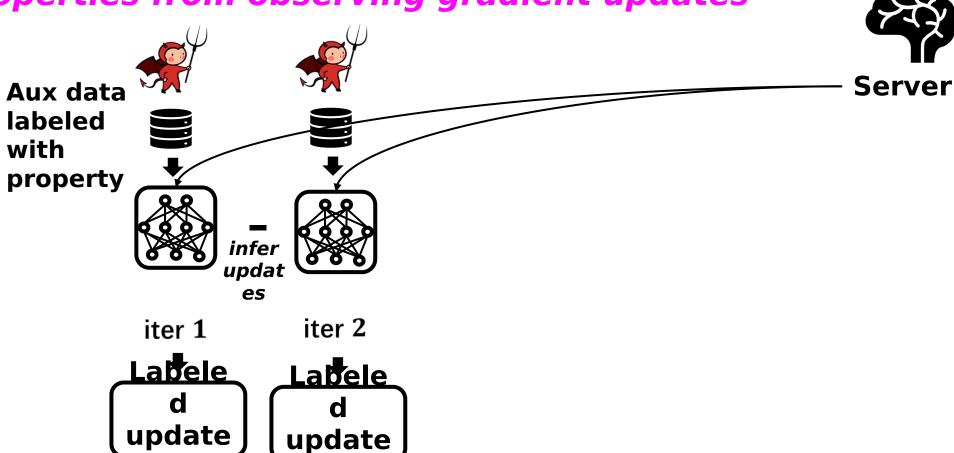


Property Inference Attacks

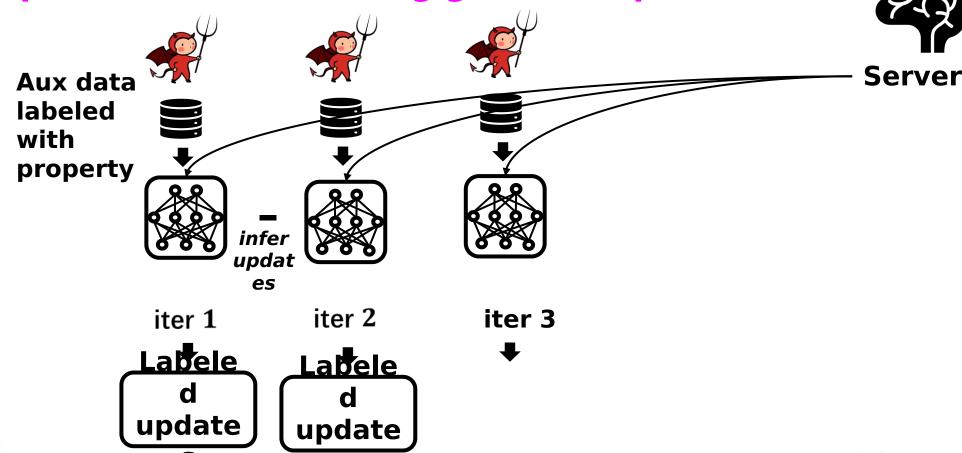
update



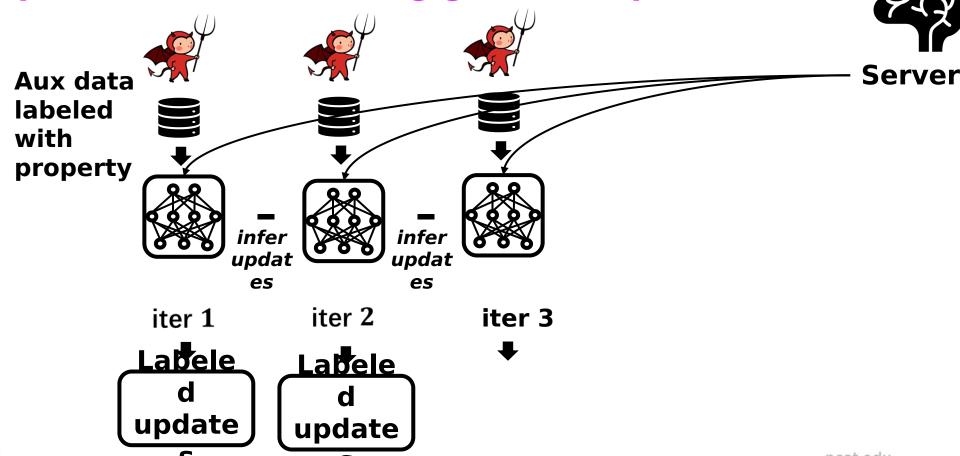
Property Inference Attacks



Property Inference Attacks

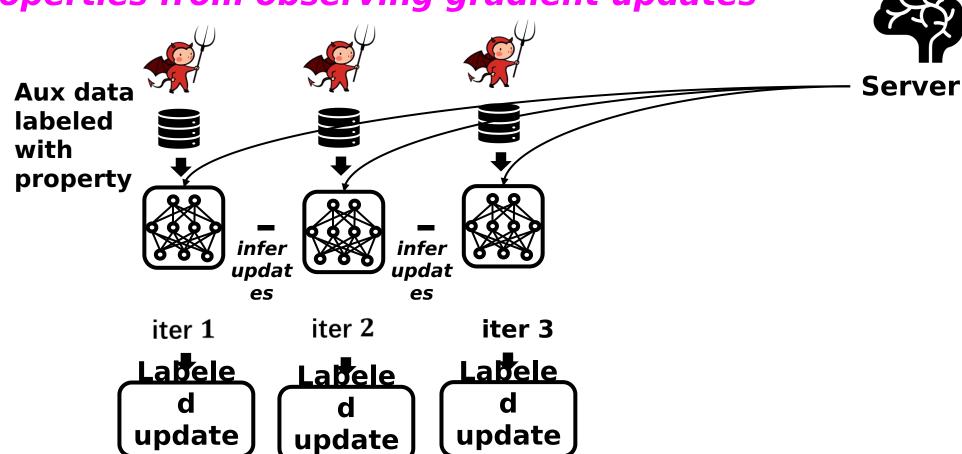


Property Inference Attacks



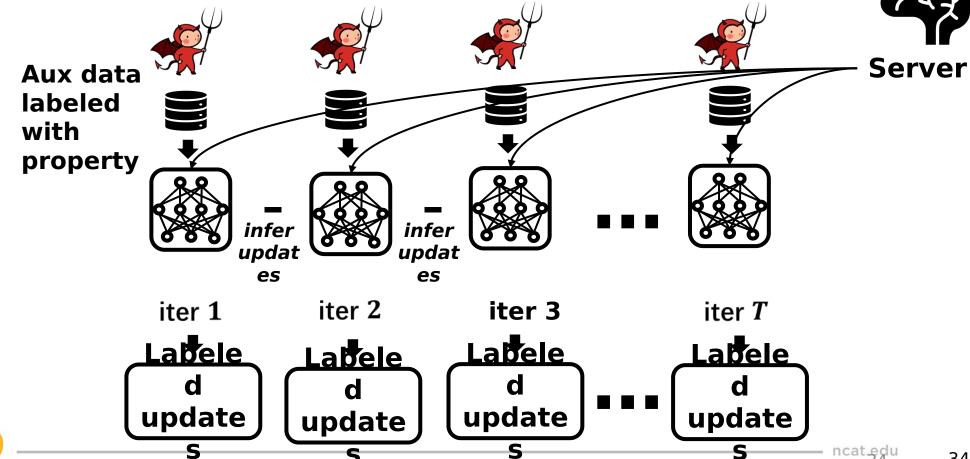
Property Inference Attacks

Inferring properties from observing gradient updates

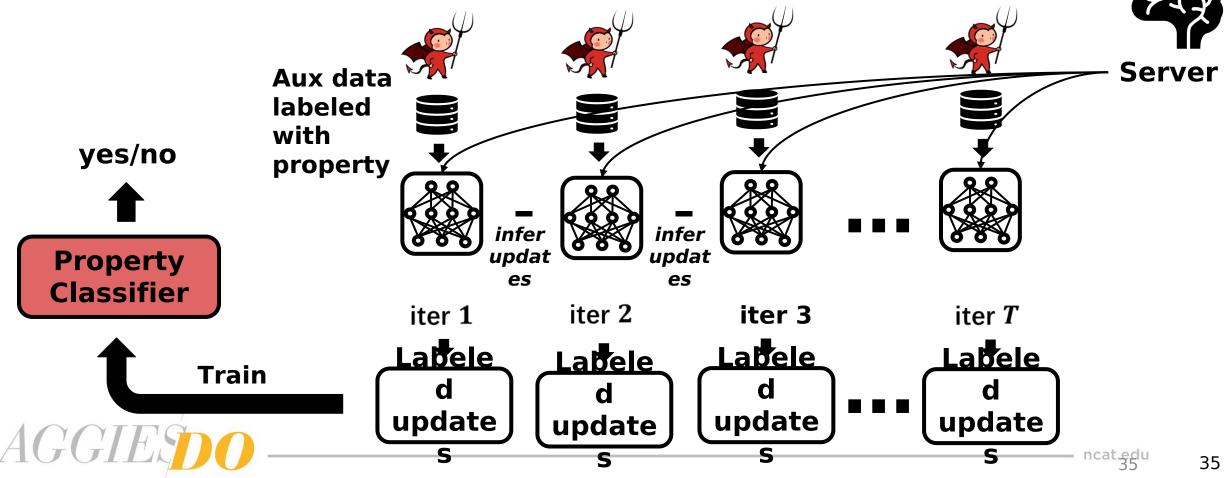


ncat.edu

Property Inference Attacks



Property Inference Attacks



Property Inference Attacks

Inferring properties from observing gradient updates

Algorithm 3 Batch Property Classifier

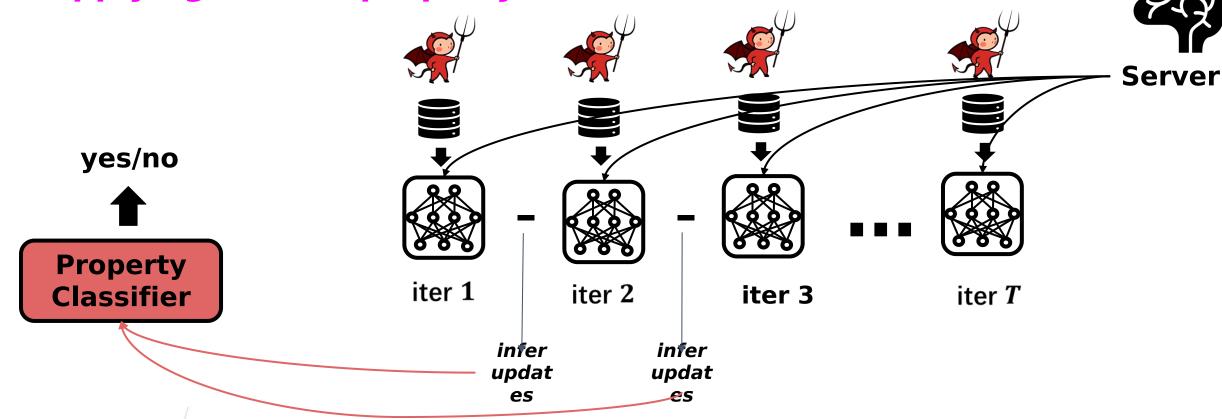
```
Inputs: Attacker's auxiliary data D_{\text{prop}}^{\text{adv}}, D_{\text{nonprop}}^{\text{adv}}
Outputs: Batch property classifier f_{prop}
                     ▶ Positive training data for property inference
G_{\text{prop}} \leftarrow \emptyset
G_{\text{nonprop}} \leftarrow \emptyset > Negative training data for property inference
for i = 1 to T do
      Receive \theta_t from server
      Run ClientUpdate(\theta_t)
      Sample b_{\text{prop}}^{\text{adv}} \subset D_{\text{prop}}^{\text{adv}}, b_{\text{nonprop}}^{\text{adv}} \subset D_{\text{nonprop}}^{\text{adv}}
      Calculate g_{\text{prop}} = \nabla L(b_{\text{prop}}^{\text{adv}}; \theta_t), g_{\text{nonprop}} = \nabla L(b_{\text{nonprop}}^{\text{adv}}; \theta_t)
      G_{\text{prop}} \leftarrow G_{\text{prop}} \cup \{g_{\text{prop}}\}\
      G_{\text{nonprop}} \leftarrow G_{\text{nonprop}} \cup \{g_{\text{nonprop}}\}\
end for
Label G_{\text{prop}} as positive and G_{\text{nonprop}} as negative
Train a binary classifier f_{\text{prop}} given G_{\text{prop}}, G_{\text{nonprop}}
```


Property Inference Attacks

Applying trained property classifier in attack

Property Inference Attacks

Applying trained property classifier in attack

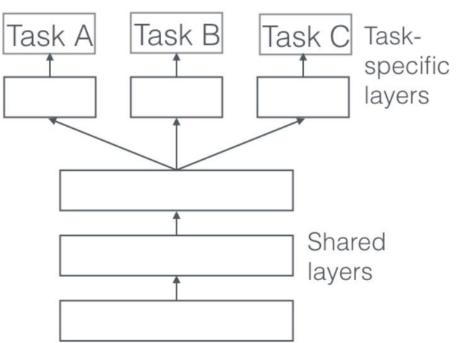


Property Inference Attacks

Active Property Inference

- Uses multi-task learning to make property inference attack more powerful
- A kind of poisoning attack

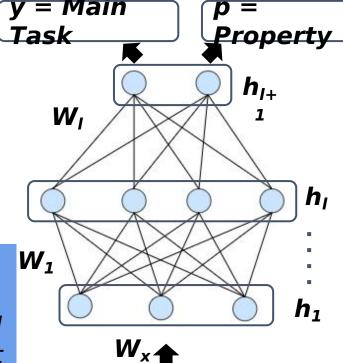
What is multi-task learning: Task A



Property Inference Attacks

Active Property Inference

In this work:



 h_{l+} Double optimization problem

ullet Adversary updates global model with $abla_{ heta} L_{
m mt}$

 $L_{\rm mt} = \alpha \cdot L(x, y; \theta) + (1 - \alpha) \cdot L(x, p; \theta)$

 Causes global model to learn separable representations for data with and without the property of interest

Enhances property inference

Adversary performs multi-task learning of both the main task and the property of interest on his local model

Summary of Experiments

Attacks	Model Architecture				
	Two-Party	Multi-Party (4 to 30)			
Passive Property Inference					
Active Property Inference	✓				
Temporal Inference	✓	✓			
Membership Inference	✓				

Experiments

Datasets

Dataset	Type of Data	# of Records	Main Tasks	Inference Tasks
LFW	images	13.2k	gender/smile/age/ eyewear/race/hair	race/eyewear
FaceScrub	images	18.8k	gender	identity
PIPA	images	18.0k	age	gender
CSI	written essays	1.4k	sentiment	membership/regio n/ gender/veracity
FourSquare	locations	15.5k	gender	membership
Yelp-health	reviews	17.9k	review score	membership/ doctor specialty
Yelp-author	reviews	16.2k	review score	author

Property Classifier Models

Conventional ML models (not neural networks)

Yelp dataset => Logistic Regression

 All other datasets => Random Forest (after experimenting with logistic regression, gradient boosting, and random forests)

Results and Analysis

Infer Property (Two-Party Labeled Faces in the Wild: Participant trains on facial images with certain

attributes larget label

Property

Correlati on

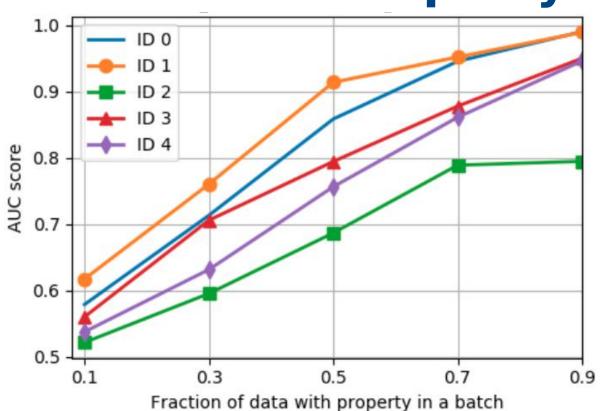
Main T.	Infer T.	Corr.	AUC	Main T.	Infer T.	Corr.	AUC
Gender	Black	-0.005	1.0	Gender	Sunglasses	-0.025	1.0
Gender	Asian	-0.018	0.93	Gender	Eyeglasses	0.157	0.94
Smile	Black	0.062	1.0	Smile	Sunglasses	-0.016	1.0
Smile	Asian	0.047	0.93	Smile	Eyeglasses	-0.083	0.97
Age	Black	-0.084	1.0	Race	Sunglasses	0.026	1.0
Age	Asian	-0.078	0.97	Race	Eyeglasses	-0.116	0.96
Eyewear	Black	0.034	1.0	Hair	Sunglasses	-0.013	1.0
Eyewear	Asian	-0.119	0.91	Hair	Eyeglasses	0.139	0.96

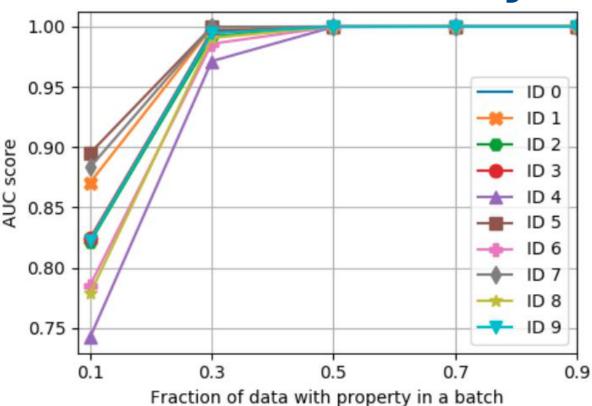
Attack **AUC**

Main task and property are not correlated!

Results and Analysis

Fractional Property Inference (Two-Party





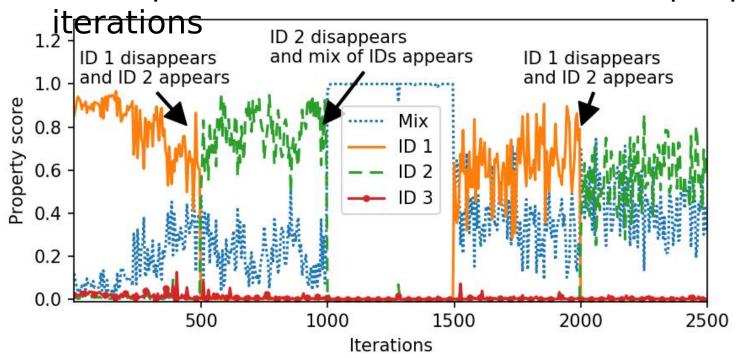
(a) FaceScrub

(b) Yelp-author

Infer Occurrence (Two-Party

Facescrib targes gender, property=facial IDs

Participant trains on faces of different people in different

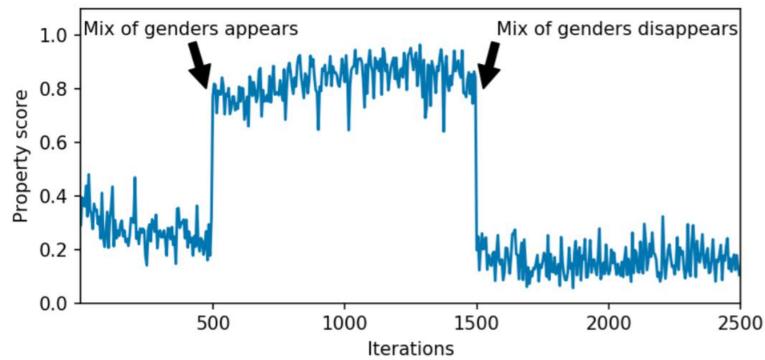


Infer when images of a certain person appear and disappear in training data

Infer Occurrence (Two-Party

Fire ages property=same gender or mixed gender

Participant trains on images with groups of people in different



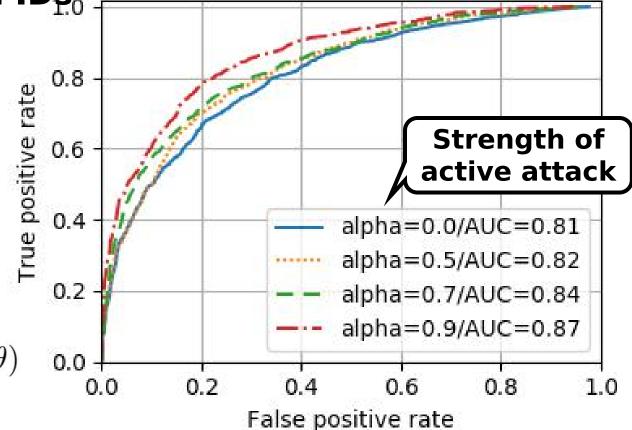
Infer when images contain people of the same gender or mixed gender

Active Attack (Two-Party Experiments): target=gender,

Adversary use property facial IDs. learning to create a model that

- Predicts task label
- Predicts property Adversary can actively bias the model to leak property by sending crafted updates!

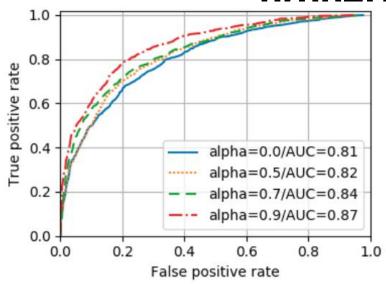
$$L_{\rm mt} = \alpha \cdot L(x, y; \theta) + (1 - \alpha) \cdot L(x, p; \theta)$$



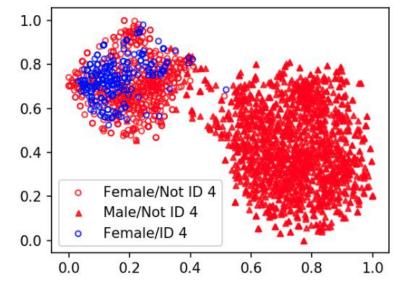
Results and Analysis

Active Attack (Two-Party Experiments): target=gender,

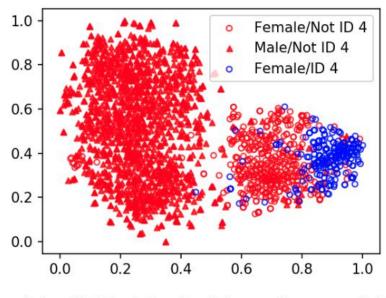
nranarty-facial IDs



(a) ROC for different α



(b) t-SNE of the final layer for $\alpha = 0$



(c) t-SNE of the final layer for $\alpha = 0.7$.

1}

Membership Inference (Two-Party

Experiments arget=review score,

Create a unique test consisting of a group of features that represents unique sample/member you want to infer (test bag of words (BoW)) 0 1 2 3 999999 Example:

Samp	e بعا	(1	N	0	0		1	1
Janp		1 4 ,	v,	v,	v,	,	,	

After each batch of training infer all the
features present (non-zero gradients in
embedding layer) in the batch (batch BoW)

If test BoW is a subset of batch BoW, then the test BoW has been inferred as a member used in the current batch of training

Yelp-health				
Batch Size Precision				
32	0.92			
64	0.84			
128	0.75			
256	0.66			
512	0.62			

Membership Inference (Two-Party

Experiments larget=gender,

inference=r

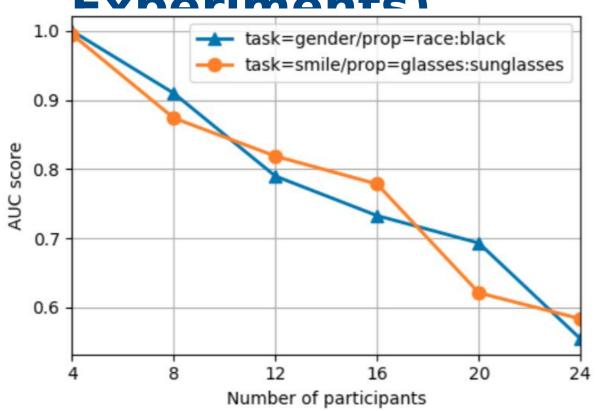
F	o	ur	S	q	u	a	r	e
				_				

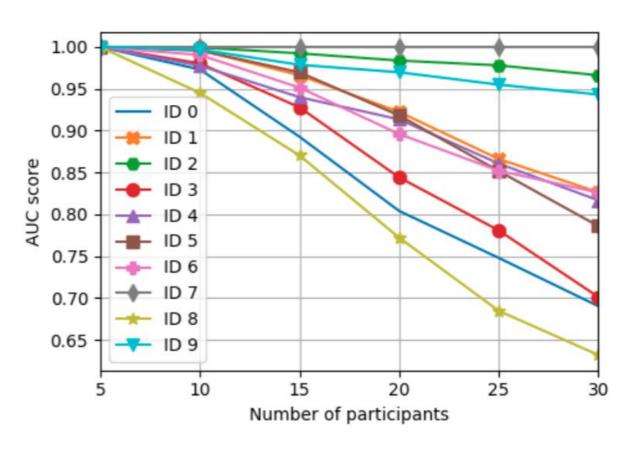
Batch Size	Precision
100	0.99
200	0.98
500	0.91
1,000	0.76
2,000	0.62

Results and Analysis

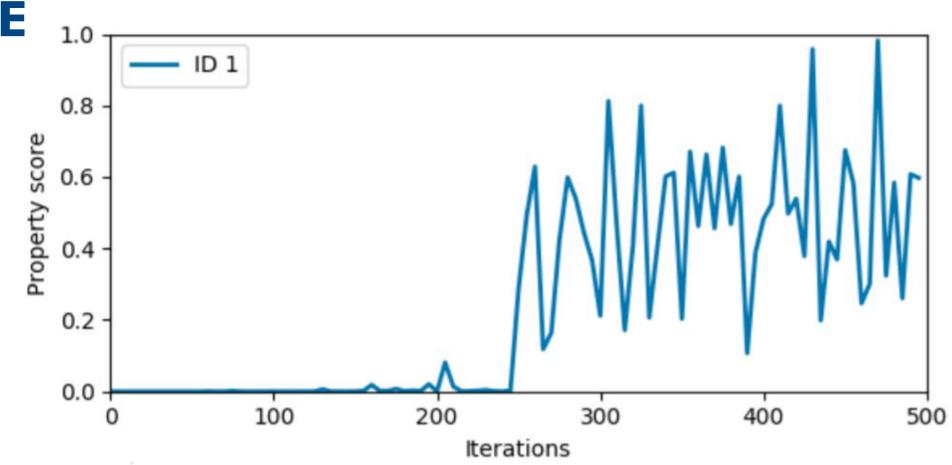
Property Inference (Multi-Party

Evnarimental





Infer Occurrence (Multi-Party



Code Demonstration

Code Demonstration

Code Structure

Load Data

Split Data among participants

Perform collaborative learning with adversary using aux data to label updates

Use labeled updates to train and test property classifier

Libraries

- Theano for deep learning
- Lasagne for deep learning
- Scikit_Learn for conventional ML models (Property classifier)

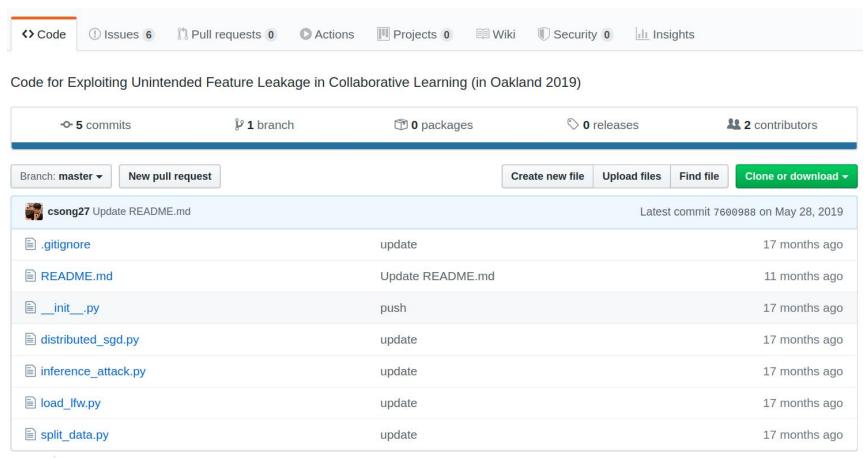
Dataset and Model Architecture

- LFW
- Two-Party
- iterations: 3000
- learn rate: 0.01

54

Code Demonstration

Code Demonstration



55

Code Demonstration

Code Demonstration

```
1# LFW Attribute Values v1.2 - lfw attributes.txt - http://www.cs.columbia.edu/CAVE/projects/faceverification
                                      person imagenum
                                                                                                                                       Male Asian White Black Baby
                                                                                                                                                                                                                                                                                                        Child Youth Middle Aged
                                                                                                                                                                                                                                                                                                                                                                                                                                           Senior Black Hair
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              No Eyewear
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Straight Hair Receding
       Eveglasses
                                                                      Sunglasses
                                                                                                                                         Mustache
                                                                                                                                                                                                         Smiling Frowning
                                                                                                                                                                                                                                                                                                          Chubby Blurry Harsh Lighting Flash Soft Lighting Outdoor Curly Hair
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Wavy Hair
      Hairline
                                                                       Bangs Sideburns
                                                                                                                                                                       Fully Visible Forehead Partially Visible Forehead
                                                                                                                                                                                                                                                                                                                                                                                                          Obstructed Forehead
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Bushy Eyebrows Arched Eyebrows Narrow Eyes
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Eyes Open
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Big
                                                                                                                                                                                                                                         Mouth Slightly Open
                                                                                                                                                                                                                                                                                                                                         Mouth Wide Open Teeth Not Visible
       Nose
                                      Pointy Nose
                                                                                                       Big Lips
                                                                                                                                                                        Mouth Closed
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             No Beard
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Goatee Round Jaw
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Double Chin
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Wearing Hat
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Oval
                                                                                                                                                                        Color Photo
                                                                                                                                                                                                                                         Posed Photo
                                                                                                                                                                                                                                                                                                        Attractive Man Attractive Woman
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Shiny
       Face
                                      Square Face
                                                                                                       Round Face
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Indian Gray Hair
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Bags Under Eyes Heavy Makeup
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Rosy Cheeks
                                                                                                       5 o' Clock Shadow
       Skin
                                      Pale Skin
                                                                                                                                                                                                         Strong Nose-Mouth Lines Wearing Lipstick
                                                                                                                                                                                                                                                                                                                                                                                                           Flushed Face
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          High Cheekbones Brown Eyes
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              Wearing Earrings
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Wearing Necktie Wearing
       Necklace
3 Aaron Eckhart 1
                                                                                                      1.56834639173 -1.88904271738
                                                                   -0.929728671614 -1.4717994909 -0.195580416696 -0.835609388667 -0.351468332141 -1.01253348522 -0.719593319061 -0.632400663502 0.464839153939 -0.973528328799
      1.73720324618
      1.56518551138 \quad -1.29670421719 \quad -1.54271878921 \quad -0.684671060805 \quad -0.864989670524 \quad 0.76688573774 \quad -0.218952102857 \quad -1.65566546684 \quad -0.787043915291 \quad -0.599664927461 \quad 0.458518580099 \quad 0.1897596683 \quad -0.218952102857 \quad -0.
      0.851554669872 \quad -0.385720388897 \quad -0.497719222187 \quad -0.161149044729 \quad -0.25751432601 \quad -0.0888388089788
                                                                                                                                                                                                                                                                                                                                                                                                                                          0.455468790136 -0.839211431403 -0.0229481172569
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              -0.922567662796 -0.114538586108
                                                                     0.251364993624 \quad -0.705281306212 \quad -0.515715482239 \quad 0.374239188976 \quad -0.168674595709 \quad -0.614143271487 \quad 3.09770263624 \quad 1.52385816838 \quad -0.614143271487 \quad -0.61414487 \quad -0.6141487 \quad -0.614147 \quad
                                                                     -0.0714539213939
                                                                                                                                                                        -1.24648342154 -0.76928347674 -0.725596699772 -1.82061027862 -2.07297656641 -0.960758740847 0.361737685257
                                                                     4 Aaron Guiel
                                                                                                        0.169850615079 -0.9824078298
       0.422709344724 \quad -1.28218444066 \quad -1.36005999796 \quad -0.867001510546 \quad -0.45229265405 \quad -0.197520738279 \quad -0.956073046658 \quad -0.802106525403 \quad -0.736883019349 \quad 0.294554304216 \quad -1.27764713376
                                                                     -0.990991854047 -1.16735850503
                                                                                                                                                                                                      -0.83514604497 0.798544268921 -0.971678536001 0.342825883931 -1.32256184017 0.962937279485 -1.19936329824 -0.157306858225
                                                                     -0.00288155806399
                                                                                                                                                                         -0.0211583900293
                                                                                                                                                                                                                                                                          -0.226562576584 -0.0810385892617
                                                                                                                                                                                                                                                                                                                                                                                                                                            -0.827201916484 -0.106624294025 1.22759371328
       0.443223864039
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        -0.812223054077 -1.24125787846
       0.0962724582428 -0.4045435044   0.32591852997
                                                                                                                                                                                                 0.474452358604 1.13535949237 0.0587247173045 0.611175959505 -1.17251028284 0.428512003215 -0.874235053954 -1.19156451444
                                                                     -0.204165914866 \ \ 0.342347000895 \ \ \ \ 0.239512219774 \ \ \ -1.47469040233 \ \ \ \ \ 0.236057105309 \ \ \ -0.565208399216 \ \ \ -0.712541538523
       0.192359075355
                                                                      -0.273305759119 -0.187721706702 -0.604608482776 -1.32170093568 -0.938558989147 0.494294491446 -0.659043168968 -1.14374681565 -0.775721833113 -0.832036380098 -0.397680027246
                                                                      -0.945431057978 -0.268648623951 -0.00624408064799
                                                                                                                                                                                                                                                                                                           -0.0304056925377
                                                                                                                                                                                                                                                                                                                                                                                                           -0.480128381674 0.666759772228
                                                                                                       0.997748978625 \quad -1.36419463748 \quad -0.157376927297 \quad -0.756447251994 \quad -1.89182505036 \quad -0.87152602607 \quad -0.862893308853
       0.0314446531456 -1.34152295494 -0.0900374885122
                                                                                                                                                                                                                                         -1.20072546722 -0.332460195946 -0.537006417334 1.29836399866
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       -1.49847119745 -1.28582334941 1.14174165431 0.172817484002
       0.106412089631 -0.788843002003 0.349295353266 -1.64371594869 0.454287433947 1.18945756037 -0.688414064597 -0.590574328946 -0.266672886189 0.467224077346 0.567348333084 -1.71910100907
       0.124666691797 \quad 1.60274145814 \quad -0.659399105992 \quad -1.7537616053 \quad 1.20447343826 \quad 0.0221883756845 \quad -1.13544276804 \quad 1.70285701537 \quad -0.422143801135 \quad 0.587859199153 \quad 0.414362867222 \quad 0.41436286722 \quad 0.414362867222 \quad 0.414362867222 \quad 0.414362867222 \quad 0.41436286722 \quad 0.4146286722 \quad 0.41462867272 \quad 0.4146286722 \quad 0.
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        -0.772273338357 0.370673075034 -0.509596298842 -0.768481995141
       0.344447478056 \quad -1.26045130216 \quad -0.577746346924 \quad 0.405567073834 \quad -1.91654528379 \quad 0.921260295304 \quad 0.247436704738 \quad -0.4284513959
      1.70689701019 \qquad 0.126523976738 \qquad -0.497001028198 \quad -0.393041978339 \quad -0.178306935845 \quad -1.1802267439 \qquad -0.596914490833 \quad -1.80538247092 \quad -0.951643406892 \quad -0.838087417542 \quad 1.54974268112 \quad -0.54974268112 \quad -
      1.88474515371 \quad -0.999765023736 \quad -1.3598581042 \quad -1.91210796401 \quad -1.09563421851 \quad 0.915125965207 \quad -0.572332382954 \quad 0.144261972973 \quad -0.84123127649
6 Aaron Peirsol 1
                                                                                                      1.12271853446 -1.99779909564 1.91614437179 -2.51421429402 -2.58007139867 -1.40423935631 0.057551079477
                                                                                                         -1.27351176256 -1.43146224608 -0.0705187622747
                                                                                                                                                                                                                                                                                                                                           -0.33923864402 -2.00414944689 0.665694950342 -0.775940385642 -1.47162908339 -1.17907991578
       0.563327280416 \quad -0.664428541937 \quad -1.40792813233 \quad 0.435594119792 \quad -0.589987923681 \quad -1.60349837846 \quad 1.17074082314 \quad 0.760103210296 \quad 0.211497967133 \quad -0.516180321472 \quad -1.33114623282 \quad 0.2028396838369 \quad -1.40792813233 \quad -0.516180321472 \quad -1.40792813233 \quad -0.516180321472 \quad -1.40792813233 \quad -0.516180321472 \quad -1.33114623282 \quad -1.40792813233 \quad -0.516180321472 \quad 
       0.499086141956 -0.0568691636225
                                                                                                                                                                         -0.866642909756 \ -0.95968887997 \ \ 0.350729937273 \ \ -1.33535414862 \ \ -0.427889677878 \ \ 0.826817153515 \ \ -0.256779421679
       0.149751104659 \quad -1.20153137751 \quad -1.08391687413 \quad 0.255363468848 \quad -0.650423019316 \quad -0.506292732963 \quad 1.10159231815 \quad 0.64078323912 \quad 1.57502827776 \quad -0.484396724644 \quad -1.55968231935 \quad -1.43712369413 \quad -1.4
                                                                     -0.648233451093 -2.25735171759 -1.07561269561 0.567822023847 -0.176088957461 1.10812479108
                                                                                                                                                                                                                                                                                                                                                                                                                                                                       -1.60094409268 -3.26461275672 0.813418335935 0.30863081628
       0.475941175723 -0.447025051151
7 Aaron Peirsol 2
                                                                                                       1.07821423781 -2.00809831161 1.67621103655 -2.2780559446
                                                                                                                                                                                                                                                                                                                                                                    -2.65184543714 -1.34840776272 0.649089348664
       0.0176564027753 \ -1.88911117008 \ -1.85721274169 \ -0.568056876713 \ 0.840375172105 \ -1.98126920929 \ 1.66671001116
                                                                                                                                                                                                                                                                                                                                                                                                                                                                      -0.910723410402 -1.99350933975 -0.871334969156
       0.507786460915 \quad -0.488946636787 \quad -0.886489888727 \quad -0.990131832196 \quad -0.75081327101 \quad -0.378478666175 \quad 0.583085632685 \quad -1.47960267898 \quad -0.88648988727 \quad -0.990131832196 \quad -0.75081327101 \quad -0.378478666175 \quad 0.583085632685 \quad -0.88648988727 \quad -0.990131832196 \quad -0.75081327101 \quad -0.378478666175 \quad 0.583085632685 \quad -0.88648988727 \quad -0.990131832196 \quad -0.75081327101 \quad -0.378478666175 \quad 0.583085632685 \quad -0.88648988727 \quad -0.990131832196 \quad -0.99013183196 \quad -0.990131832196 \quad -0.9901
       0.250184727343 \quad -0.38112304548 \quad -0.61199103242 \quad -0.143090577304 \quad -1.07275988807 \quad 0.43209396266 \quad 1.08919285242 \quad -0.470928661825 \quad -1.17712410289 \quad -0.111312751227 \quad -0.154602526203 \quad -1.0315082548
       2.39245818882 -0.19157645761 1.2279032724
                                                                                                                                                                                                       -1.38179742097 -1.52885140882 0.90796350999
                                                                                                                                                                                                                                                                                                                                                                                                      -1.32428788117 -0.934644359205 0.686994692207 -0.149300693668
       0.0336262689499 \ -0.911137660105 \ -1.24109244095 \ \ 0.904176737805 \ \ -0.309967224321 \ -1.03889207091 \ \ 3.75811845298 \ \ 1.05836521801 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.30996724321 \ \ -0.309967224321 \ \ -0.309967224321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ -0.30996724321 \ \ \ -0.30996724311 \ \ -0.30996724311 \ \ -0.30996724311 \ \ -0.3099672
       1.50214961782 \quad -0.649714863778 \quad -1.07294353889 \quad -1.7783162834 \quad -0.077124435763 \quad -0.743271427817 \quad -3.30070920476 \quad -0.7792193783 \quad -0.077124435763 \quad 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         -1.46147431539 -0.955282684761
```


Countermeasures

Sharing fewer gradients

Theory: the fewer the parameters/gradients shared by participants, the less information can be leaked

- Demonstrated in [1]
- Comes with the cost of reduced accuracy of the global model

Property inference attacks against CSI dataset. Main Task: sentiment

Property / % parameters update	10%	50%	100%
Top region (Antwerpen)	0.84	0.86	0.93
Gender	0.90	0.91	0.93
Veracity	0.94	0.99	0.99

* does not show accuracy of actual model for the main task

57

Countermeasures

Dimensionality Reduction

- Theory: for sparse input space, use a smaller subset of the larger input space (e.g the most frequent features). Smaller input space should leak less information
- Comes with the cost of reduced accuracy of the global model

Membership inference attacks against CSI and FourSquare datasets.

Main Task: gender

	CSI		F	FourSquare	
Top N	Attack	Model	Top N	Attack	Model
words	Precision	AUC	locations	Precision	AUC
4,000	0.94	0.91	30,000	0.91	0.64
2,000	0.92	0.87	10,000	0.86	0.59
1,000	0.92	0.85	3,000	0.65	0.51
500	0.82	0.84	1,000	0.52	0.50

Countermeasures

Dropout

 Theory: regularization technique to reduce overfitting by randomly deactivating links between neurons

Reduces number of gradients

 Comes with the cost of reduced accuracy of the global model Property inference attacks against CSI dataset. Main Task: sentiment

Dropout Prob.	Attack AUC	Model AUC
0.1	0.94	0.87
0.3	0.97	0.87
0.5	0.98	0.87
0.7	0.99	0.86
0.9	0.99	0.84

Participant or Record Level Differential Privacy (DP)

- Theory: add random noise to participant datasets/individual samples to make reverse engineering difficult
- Comes with the cost of reduce accuracy of joint model
- Record level DP can prevent membership inference, but not individual property inference
- Participant level DP can limit the success of all attacks, but it needs a large number of participants for training to converge and get a reasonable accuracy [2]

60

Artificial Multiplication of Participants

- Theory: multi-party property inference attack accuracy reduces as number of participants increase.
- Multiply number of participants even if not needed;
- Split data across participants where possible

61

Limitations

- Availability of auxiliary data (some may be easier to find than others)
- Number of participants
- Undetectable properties
- Attribution of inferred properties (trivial in two-party; not possible in multi-party)

Related Work

- Orekondy, T., Schiele, B., & Fritz, M. Gradient-Leaks: Understanding and Controlling Deanonymization in Federated Learning.
- B. Hitaj, G. Ateniese, and F. P´ erez-Cruz. Deep models under the GAN: Information leakage from collaborative deep learning. In CCS, 2017.

Related Work

B. Hitaj, G. Ateniese, and F. P´ erez-Cruz. Deep models under the GAN: Information leakage from collaborative deep

learning.

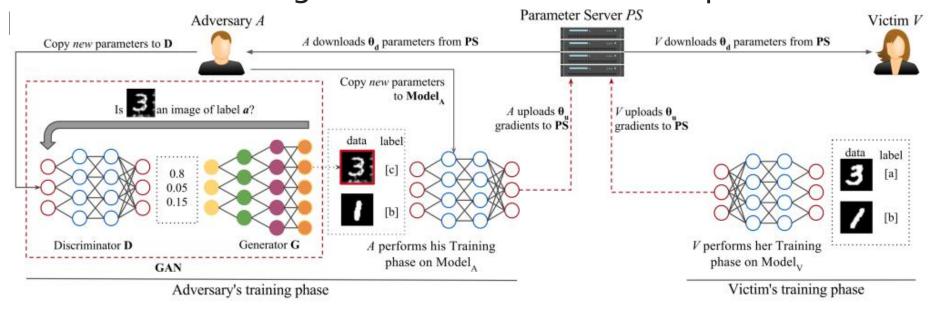


Figure 4: GAN Attack on collaborative deep learning. The victim on the right trains the model with images of 3s (class a) and images of 1s (class b). The adversary only has images of class b (1s) and uses its label c and a GAN to fool the victim into releasing information about class a. The attack can be easily generalized to several classes and users. The adversary does not even need to start with any true samples.

Conclusion

- Property and membership attacks on collaborative learning have been demonstrated
- Uncorrelated properties to main task can be leaked through model/gradient updates
- Active attacks can make property inference even more powerful
- Countermeasures such as fewer gradient sharing, dimensionality reduction, dropout are not very effective
- Collaborative learning has security vulnerabilities; more research is required to come up with effective countermeasures

Q&A