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NEURAL NETWORKS
A neural network is a function 
with trainable parameters that 
learns a given mapping. For 
example,

•Classify a handwritten number
•Class i f y  ca t  and  dog  in  a 

image
•Bad and good movie review
•Given a file, classify malware 

and benign4
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BACKGROUND

Structure
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BACKGROUND

Activation 
Functions



NEURAL NETWORKS 

7

BACKGROUND

With Activation 
Function



NEURAL NETWORKS
The output of a neural network F(x) is a 
probability distribution (p,q,...) where
•p is the probability of class 1

•q is the probability of class 2

•…
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BACKGROUND

Loss Function
The measure of  how accurate the network is. Usually minimized 
with gradient descent technique. 
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BACKGROUND

Gradient 
DescentUsed to minimize the loss function to reasonable small value. 
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BACKGROUND

Two important things to 
notice
•Highly Non-Linear
•Gradient Decent
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BACKGROUND

ImageNet
•ImageNet 2011 best result: 75% 

accuracy No Neural Nets Used
•ImageNet 2012 best result: 85% 

accuracy Only top submission uses 
Neural Nets
•ImageNet 2013 best result: 89% 

accuracy ALL top submissions use 
Neural Nets 
•The best accuracy today is 97% 
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BACKGROUND

ML and NN in self-driving / autonomous 
cars
•Tremendous potential to make 

autonomous vehicle a reality
•A lot if companies are in race to 

p r o d u c e  s a f e  a n d  s e c u r e 
autonomous vehicles
•S ome o f  t he  c ompan ies  a re 

mentioned here on right
•NCAT efforts towards autonomous 

vehicles
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BACKGROUND

Envisioned ML 
applications
•Predicting road conditions 

•Interaction with other vehicles

•Recognizing risky road condition

•Assisting drivers in decision making
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BACKGROUND

Vulnerabilities in ML and 
NN
•Defense against different attacks

•Easily fooled

•Getting a lot of attention

•One example of Adversarial attacks 

in image classification
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Compromised model
•Could misclassify certain thing, one example down below 
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Compromised model
•Which can result in this
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SELF-DRIVING CARS 
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MOTIVATION

To make them reality
•Safety of highly critical application

•Investigate and design methods for secure ML models.

•Create attacks to continuously test the current models.

•Customers trust
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INTRODUCTION TO EVASION ATTACKS

Definition

•Given an input X, and any label T 

•Find an X′ close to X 

•So that F(X′) = Target class

•For example as mentioned before
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INTRODUCTION TO EVASION ATTACKS

Adversarial Examples
•Gradient descent works very well for training neural networks. Why 

not for breaking them too ?
•Formulation : given input � , find �′ where 
•minimize �(x, x′) such that,

�(��) = � and x′ is valid.

•Gradient descent to the rescue ?
•Non-linearity constraint are difficult
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INTRODUCTION TO EVASION ATTACKS

Reformulation

•Moving constraints to objective function

•minimize     �(x, x�) + g(x�)      such that x�is valid

•Where g(x�) is some loss function how on close �(��) is to the target T

•g(x�)  <   =   0 �X �(��) = �
•g(x�)  <   =   1 �X �(��)! = �
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BACKGROUND AND THREAT MODEL

Components
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BACKGROUND AND THREAT MODEL

Threat Model

•Infotainment 

•Access to attacker

•Adversarial example from sensor

•Result in misclassification
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BACKGROUND AND THREAT MODEL

Threat Model
•They use models from Udacity Challenge 

2014
• Where the steering angle is predicted 

based on imagery dataset.
•White-box Attack is considered
•Stealthy perturbation
• To avoid human suspicion by looking at camera
• To avoid detection by anomaly detection software
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ATTACK ALGORITHM

Prerequisites 
•Classification problem for lane change.

•Angle threshold for left, right and 

straight.

•R e g r e s s i o n  p r o b l e m  f o r  a n g l e 

prediction

•Same as Udacity challenge 2.

•Epoch and NVIDIA Models. 
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ATTACK ALGORITHM

Epoch Model

Input 
Image

• Classification model  
• 25 million total parameters

• For regression the sof tmax layer is 
removed  
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BACKGROUND AND THREAT MODEL

Nvidia Model
• Classification model  

• 467 million total parameters

• For regression the sof tmax layer is 
removed  
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ATTACK ALGORITHM

Evasion attacks against direction 
classification•The concept of same gradient decent

•Perturbation measurement using  �� 

•�� attack by Carlini and Wagner

��i���敔䝘��� − ��� + � ∙�X����X��≠����(�)� − ��(�)�, 0�

•Where � is the perturbed image, �� is the original, � and � are the 
misclassification and proper classification, respectively.

•� is the hyper parameter to control between success rate and 
perturbation.
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ATTACK ALGORITHM

Evasion attacks against direction 
classification•Optimization function for attack algorithm in the paper

��i���敔䝘�     ��� + � ∙ X(� +�)
such that (� +�)�[0,1]�

X(� +�) = �max�(�(� +�)�≠�) −�(� +�)��
+

�ℎ䝘X䝘 �  − �X���iX� ��XGG, � ≠ � – adversarial target class

•While � is the perturbation, X(� +�)is the objective function, 

•� is the hyper parameter to control between success rate and 
perturbation.
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ATTACK ALGORITHM

Evasion attacks against steering angle regression 
prediction.•Main idea is to maximize the MSE predicted response vs true 

response.

•The following function is optimized to find adversarial image.

��i���敔䝘�     ��� − � ∙ �(� +�,�)
such that (� +�)�[0,1]�

�(� +�,�) = (F�(� +�) − �)�

•Where � is the perturbation, �(� +�)is the objective function, 

•� is the hyper parameter to control between success rate and 
perturbation.
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EXPERIMENTS AND RESULTS

Database
•Used 33,608 images from Udacity 

challenge 2.

•Preprocessing
• Crop them to 640 x 420 
• Resize to 128 x 128 pixels.
• Setting the classification thresholds at 

0.15 in histogram

128 x 128640 x 420
Crop Resize



TRAINING

37

EXPERIMENTS AND RESULTS

Training Results
•10-fold cross validation

•Hyperparameters

•Accuracy
• Classification accuracy
• Epoch model is 90%
• NVIDIA is 86% 
• Regression Accuracy
• Epoch model is MSE of 0.03
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EXPERIMENTS AND RESULTS

Attack results for direction prediction
• 300 Images used for 3 classes.
• S e l e c t  t w o  2  v a l u e s  f o r  t a r g e t e d 

adversarial class. 

• Optimal parameter �  is selected using 
binary search starting from 0.001

• Attack success rate 
• Epoch model with 0.82 �� norm
• Nvidia model with 121 �� norm

• ROC 
• Without / With attack
• From 1 to 0.62 for 0.75 �� norm perturbation
• Attack Time
• 5 and 25 seconds respectively for Epoch and 

Nvidia
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EXPERIMENTS AND RESULTS

Original Images vs Adversarial Images

Epoch 
Model

Nvidia Model
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EXPERIMENTS AND RESULTS

Attack results for steering angle prediction
•100 images used for attack.

•Optimal parameter �  is selected 
using binary with best value = 100

•Attack success rate 
•MSE ratio vs �� norm
•90% of have 0.52 ��  norm for 

adversarial images. 

•Model performance 
• CDFs of regression model with and 

without attack.
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EXPERIMENTS AND RESULTS

Original Images vs Adversarial Images
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EXPERIMENTS AND RESULTS

Original Images vs Adversarial Images
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CONCLUSION

•Open Problem

•Defense mechanism are needed for ML / NN models

•Related Work

•Defense Distillation Technique
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