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AGC MIA - BUIDING ATTACK MODEL

Obtaining Data for Shadow Models
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Accuracy
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Precision of the membership inference attack against neural networks trained on CIFAR datasets. The graphs show precision for
different classes while varying the size of the training datasets. The median values are connected across different training set sizes.
The median precision (from the smallest dataset size to largest) is 0.78, 0.74, 0.72, 0.71 for CIFAR-10 and 1,1, 0.98,0.97 for CIFAR-
100. Recall is almost 1 for both datasets. The figure on the left shows the per-class precision (for CIFAR-10). Random guessing
accuracy is 0.5.
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Accuracy
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MIA - CODE DEMO

Code

Library

from mia.estimators import ShadowModelBundle, AttackModelBundle,
prepare_attack data

Build shadow model and
generate data for training
attack model
smb = ShadowModelBundle(
target_model fn,
shadow_dataset size=SHADOW DATASET SIZE,
hum_models=FLAGS.num_shadows,

)

X_shadow, y shadow = smb.fit_transform(att _X_train, att_y train)

Code to generate Attack
Models

amb = AttackModelBundle(attack model fn, num_classes=NUM_CLASSES)
amb.fit(X _shadow, y_shadow)

Prepare data for Attack

attack test data, real membership labels = prepare attack data(
target model, data in, data out)

attack _guesses = amb.predict(attack test data)
attack_accuracy = np.mean(attack_guesses == real _membership_labels)
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JES MIA - OTHER MITIGATION MEASURES

Differential privacy
Strategy Evaluation

e Use Differential privacy in ‘
training/ building Target model

* (€, 6) Differential privacy

* The distribution of output M(D)
Is nearly the same as M(D”)

D & D’ differ slightly

+ & is info leakage S . - T
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MIA - OTHER MITIGATION MEASURES

IES
Differential privacy
Evaluation (Cnt’d)
Datasets e=] | e=2 | e=4 | ¢=8 | non-private
CIFAR-10 (train) | 0.247 | 0450 | 0.608 | 0.680 | 0944
CIFAR-10 (test) | 0.253 | 0.450 | 0.607 | 0.681 |  0.737
MNIST (train) | 0.762 | 0.874 | 0909 | 0937 |  0.999
MNIST (test) | 0757 | 0.870 | 0.906 | 0932 | 0970
* Poor utility - privacy trade off § -
@;i > & F S QGQ <« @5‘%@ ‘?’@é <
ﬁ NORTH CAROLINA AGRICULTURAL ncat.edu

AND TECHNICAL STATE UNIVERSITY



ial Examples

confidence vector of Target Model
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