Introduction to Neural Networks 2

Dr. Mahmoud N Mahmoud mnmahmoud@ncat.edu

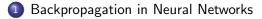
North Carolina A & T State University

October 7, 2020

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

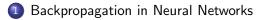
October 7, 2020

1/64



<ロト < 四ト < 三ト < 三ト

Outline





2

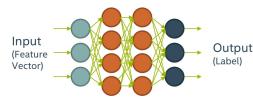
HOW TO TRAIN A NEURAL NET?

- Put in training inputs, get the output
- Compare output to correct answers: look at loss function J
- Adjust and repeat!
- Backpropagation tells us how to make a single adjustment using calculus.

A D N A B N A B N A B N

HOW TO TRAIN A NEURAL NET?

- Put in training inputs, get the output
- Compare output to correct answers: look at loss function J
- Adjust and repeat!
- Backpropagation tells us how to make a single adjustment using calculus.



HOW HAVE WE TRAINED BEFORE?

Gradient Descent!

- 1. Make prediction
- 2. Calculate Loss
- 3. Calculate gradient of the loss function w.r.t. parameters
- 4. Update parameters by taking a step in the opposite direction
- 5. Iterate

э

< □ > < 同 > < 回 > < 回 > < 回 >

HOW HAVE WE TRAINED BEFORE?

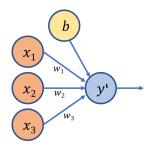
Gradient Descent!

- 1. Make prediction
- 2. Calculate Loss
- 3. Calculate gradient of the loss function w.r.t. parameters
- 4. Update parameters by taking a step in the opposite direction
- 5. Iterate

э

< □ > < 同 > < 回 > < 回 > < 回 >

Logistic Regression as Neural Network (Refresher 1/5)



Feedforwad one sample

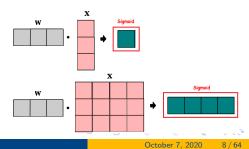
 $\mathbf{I} \quad z = \mathbf{w}^T \cdot \mathbf{x} + b$

$$y = \sigma(z)$$

Feedforwad batch

$$z = w \cdot X + b$$

$$y = \sigma(z)$$



Logistic Regression as Neural Network (Refresher 2/5)

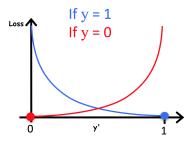
• Since y' in logistic regression is a probability between 0 and 1.

Logistic Regression as Neural Network (Refresher 2/5)

- Since y' in logistic regression is a probability between 0 and 1.
- Our loss can be defined with the following loss function.

• if
$$y = 1$$
 : Loss = $-\log(y')$

• if
$$y = 0$$
 : Loss = $-\log(1-y')$



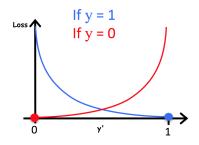
▲ □ ▶ ▲ 三 ▶ ▲ 三

Logistic Regression as Neural Network (Refresher 2/5)

- Since y' in logistic regression is a probability between 0 and 1.
- Our loss can be defined with the following loss function.

• if
$$y = 1$$
 : Loss = $-\log(y')$

• if
$$y = 0$$
 : Loss = $-\log(1-y')$



 $Loss = \ell = -ylog(y')-(1-y)log(1-y')$

< ロト < 同ト < ヨト < ヨ

Logistic Regression as Neural Network (Refresher 3/5)

イロト 不得 トイヨト イヨト

October 7, 2020

3

10/64

• For n features:
$$z = \sum_{i=0}^{i=n} w_i x_i$$
, (w_0 is the bias)

• vector representation $z = w^T x$

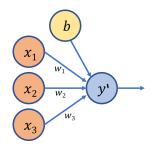
•
$$y = sigmoid(z) = \sigma(z)$$

•
$$\ell = -y \log(y') - (1 - y) \log(1 - y')$$

Logistic Regression as Neural Network (Refresher 4/5)

$$\begin{aligned} \frac{d\ell}{dw_{i}} &= \frac{d\ell}{dy'} \frac{dy'}{dw_{i}} = \frac{d\ell}{dy'} \frac{dy'}{dz} \frac{dz}{dw_{i}} \\ &= \underbrace{\left[\frac{-y}{\sigma(z)} + \frac{1-y}{1-\sigma(z)}\right]}_{\frac{d\ell}{dy'}} \underbrace{\underbrace{\sigma(z)(1-\sigma(z))}_{\frac{dy'}{dz}} \underbrace{\underbrace{\sigma(z)}_{\frac{dz}{dw_{i}}}}_{\frac{dz}{dw_{i}}} \\ &= \underbrace{\left[\frac{-y(1-\sigma(z)) + (1-y)\sigma(z)}{\sigma(z)(1-\sigma(z))}\right]}_{\frac{d\ell}{dy'}} \underbrace{\underbrace{\sigma(z)(1-\sigma(z))}_{\frac{dy'}{dz}} \underbrace{\underbrace{\sigma(z)}_{\frac{dz'}{dw_{i}}}}_{\frac{dz'}{dw_{i}}} \\ &= \underbrace{\left[\frac{-y(1-\sigma(z)) + (1-y)\sigma(z)}{\sigma(z)(1-\sigma(z))}\right]}_{\frac{d\ell}{\frac{d\ell}{y'}}} \underbrace{\underbrace{\sigma(z)(1-\sigma(z))}_{\frac{dy'}{dz}} \underbrace{\underbrace{\sigma(z)}_{\frac{dz'}{dw_{i}}}}_{\frac{dz'}{dw_{i}}} \\ &= \underbrace{\left[\frac{-y(1-\sigma(z)) + (1-y)\sigma(z)}{\sigma(z)(1-\sigma(z))}\right]}_{\frac{d\ell'}{\frac{d\ell'}{dy'}}} \underbrace{\underbrace{\sigma(z)(1-\sigma(z))}_{\frac{dy'}{dz}} \underbrace{\underbrace{\sigma(z)}_{\frac{dz'}{dw_{i}}}}_{\frac{dz'}{dw_{i}}} \\ &= (\sigma(z) - y) * x_{i} \end{aligned}$$

Logistic Regression as Neural Network (Refresher 5/5)

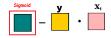


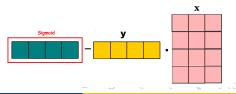
Loss one sample (using log loss)

$$\frac{d\ell}{dw_i} = (y' - y) * x_i$$

(

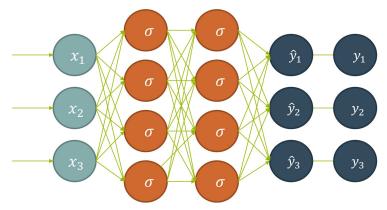
Loss four samples (using log loss)



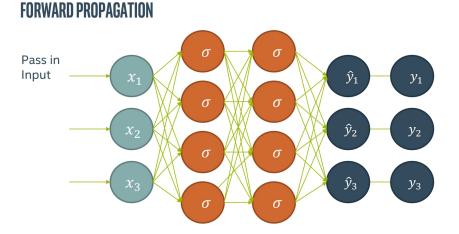


October 7, 2020 12 / 64

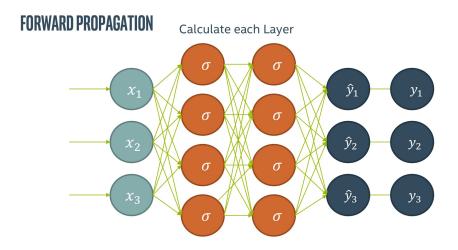
FEEDFORWARD NEURAL NETWORK



2

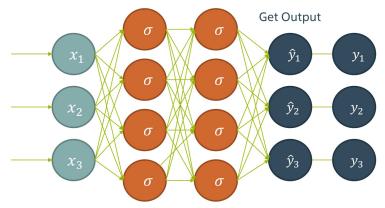


■ ▶ ▲ ■ ▶ ■ ∽ ९ ० October 7, 2020 14 / 64

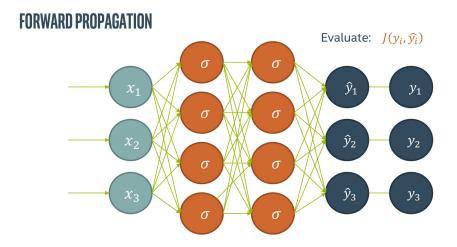


2

FORWARD PROPAGATION



2



2

HOW HAVE WE TRAINED BEFORE?

Gradient Descent!

- 1. Make prediction
- 2. Calculate Loss

3. Calculate gradient of the loss function w.r.t. parameters

- 4. Update parameters by taking a step in the opposite direction
- 5. Iterate

э

HOW TO CALCULATE GRADIENT?

Chain rule

October 7, 2020 19 / 64

э

Chain Rule Refresher

- Foward propagation can be viewed as a long series of nested equations.
- Backpropagation is merely an application the Chain Rule to find the Derivatives of cost with respect to any variable in the nested equation.
 Ex.

What is $\frac{df}{dx}$?

f(x) = A(B(C(x)))

< □ > < □ > < □ > < □ > < □ > < □ >

October 7, 2020

20 / 64

Chain Rule Refresher

- Foward propagation can be viewed as a long series of nested equations.
- Backpropagation is merely an application the Chain Rule to find the Derivatives of cost with respect to any variable in the nested equation.
 Ex.

October 7, 2020

20 / 64

What is $\frac{df}{dx}$? f(x) = A(B(C(x))) $\frac{df}{dx} = \frac{dA}{dB} * \frac{dB}{dC} * \frac{dC}{dx}$

HOW TO TRAIN A NEURAL NET?

- How could we change the weights to make our Loss Function lower?
- Think of neural net as a function F: X -> Y
- F is a complex computation involving many weights W_k
- Given the structure, the weights "define" the function F (and therefore define our model)
- Loss Function is J(y,F(x))

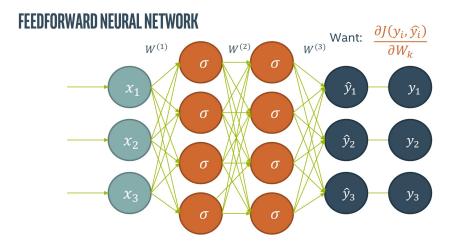
3

< □ > < 同 > < 回 > < 回 > < 回 >

HOW TO TRAIN A NEURAL NET?

- Get $\frac{\partial J}{\partial W_k}$ for every weight in the network.
- This tells us what direction to adjust each Wk if we want to lower our loss function.
- Make an adjustment and repeat!

A D N A B N A B N A B N



э

A D N A B N A B N A B N

CALCULUS TO THE RESCUE

- Use calculus, chain rule, etc. etc.
- Functions are chosen to have "nice" derivatives
- Numerical issues to be considered

э

PUNCHLINE

o .

$$\frac{\partial J}{\partial W^{(3)}} = (\hat{y} - y) \cdot a^{(3)}$$

$$\frac{\partial J}{\partial W^{(2)}} = (\hat{y} - y) \cdot W^{(3)} \cdot \sigma'(z^{(3)}) \cdot a^{(2)}$$

$$\frac{\partial J}{\partial W^{(1)}} = (\hat{y} - y) \cdot W^{(3)} \cdot \sigma'(z^{(3)}) \cdot W^{(2)} \cdot \sigma'(z^{(2)}) \cdot X$$

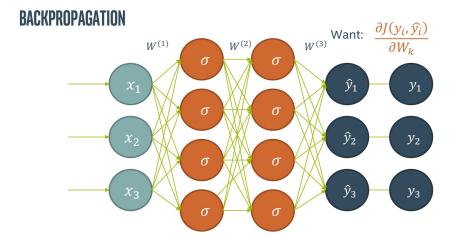
- Recall that: $\sigma'(z) = \sigma(z)(1 \sigma(z))$
- Though they appear complex, above are easy to compute!

イロト イヨト イヨト

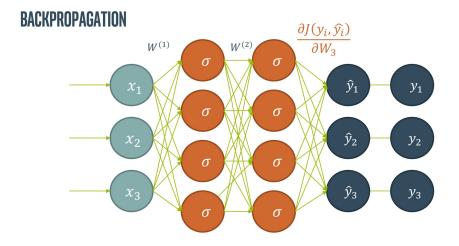
æ

25 / 64

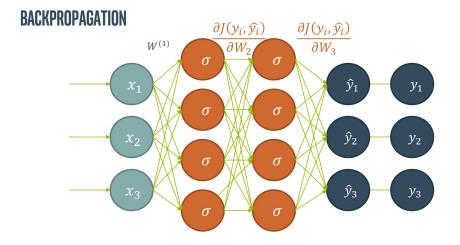
October 7, 2020



2

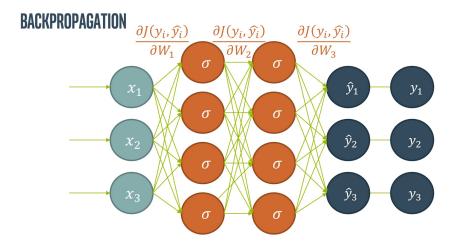


2



October 7, 2020 28 / 64

2



2

HOW HAVE WE TRAINED BEFORE?

Gradient Descent!

- 1. Make prediction
- 2. Calculate Loss
- 3. Calculate gradient of the loss function w.r.t. parameters
- 4. Update parameters by taking a step in the opposite direction

イロト イヨト イヨト イヨ

э

30 / 64

October 7, 2020

5. Iterate

VANISHING GRADIENTS

Recall that:

$$\frac{\partial J}{\partial W^{(1)}} = (\hat{y} - y) \cdot W^{(3)} \cdot \sigma'(z^{(3)}) \cdot W^{(2)} \cdot \sigma'(z^{(2)}) \cdot X$$

- Remember: $\sigma'(z) = \sigma(z)(1-\sigma(z)) \le .25$
- As we have more layers, the gradient gets very small at the early layers.
- This is known as the "vanishing gradient" problem.
- For this reason, other activations (such as ReLU) have become more common.

WHAT NEXT?

- Given an example (or group of examples), we know how to compute the derivative for each weight.
- How exactly do we update the weights?
- How often? (after each training data point? after all the training data points?)

< □ > < 同 > < 回 > < 回 > < 回 >

WHAT NEXT?—GRADIENT DESCENT

- W_new = W_old lr * derivative
- Classical approach—get derivative for entire data set, then take a step in that direction
- Pros: Each step is informed by all the data
- Cons: Very slow, especially as data gets big

< □ > < 同 > < 回 > < 回 > < 回 >

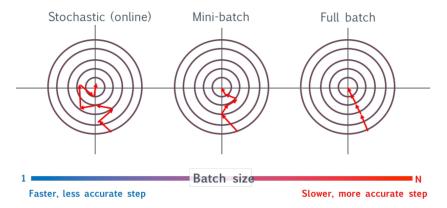
ANOTHER APPROACH: STOCHASTIC GRADIENT DESCENT

- Get derivative for just one point, and take a step in that direction
- Steps are "less informed" but you take more of them
- Should "balance out"
- Probably want a smaller step size
- Also helps "regularize"

COMPROMISE APPROACH: MINI-BATCH

- Get derivative for a "small" set of points, then take a step in that direction
- Typical mini batch sizes are 16, 32
- Strikes a balance between two extremes

COMPARISON OF BATCHING APPROACHES



October 7, 2020 36 / 64

э

A D N A B N A B N A B N

BATCHING TERMINOLOGY

Full-batch: Use entire data set to compute gradient before updating

Mini-batch:

Use a smaller portion of data (but more than single example) to compute gradient before updating

Stochastic Gradient Descent (SGD):

Use a single example to compute gradient before updating (though sometimes people use SGD to refer to minibatch, also)

BATCHING TERMINOLOGY

- An Epoch refers to a single pass through all of the training data.
- In full batch gradient descent, there would be one step taken per epoch.
- In SGD / Online learning, there would be n steps taken per epoch (n = training set size)
- In Minibatch there would be (n/batch size) steps taken per epoch
- When training, it is common to refer to the number of epochs needed for the model to be "trained".

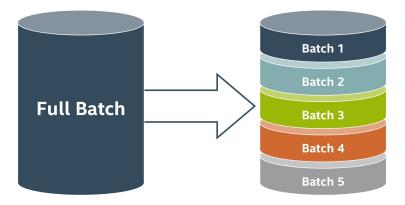
< □ > < □ > < □ > < □ > < □ > < □ >

NOTE ON DATA SHUFFLING

- To avoid any cyclical movement and aid convergence, it is recommended to shuffle the data after each epoch.
- This way, the data is not seen in the same order every time, and the batches are not the exact same ones.

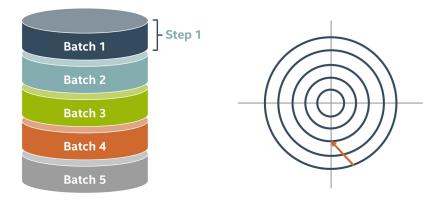
▲ □ ▶ ▲ □ ▶ ▲ □

FEEDFORWARD NEURAL NETWORK



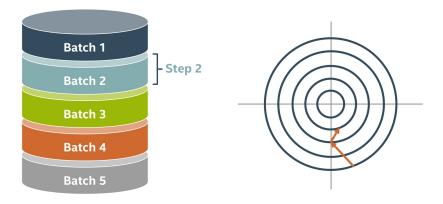
э

イロト イヨト イヨト イヨト



2

・ロト ・四ト ・ヨト ・ヨト

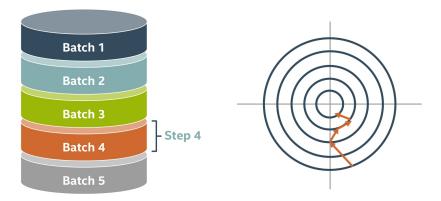


3

イロト イヨト イヨト

2

・ロト ・四ト ・ヨト ・ヨト



э

イロト イヨト イヨト

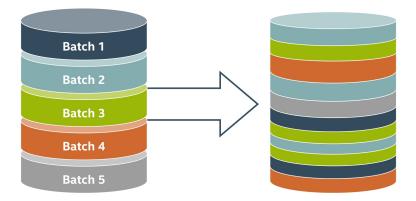
2

・ロト ・四ト ・ヨト ・ヨト

э

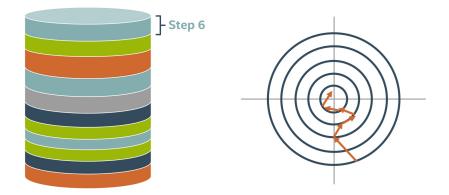
イロト イポト イヨト イヨト

SHUFFLE THE DATA!



3

SHUFFLE THE DATA!



3

・ロト ・四ト ・ヨト ・ヨト

THE KERAS PACKAGE

- Keras allows easy construction, training, and execution of Deep Neural Networks
- Written in Python, and allows users to configure complicated models directly in Python
- Uses either Tensorflow or Theano "under the hood"
- Uses either CPU or GPU for computation
- Uses numpy data structures, and a similar command structure to scikitlearn (model.fit, model.predict, etc.)

< □ > < □ > < □ > < □ > < □ > < □ >

TYPICAL COMMAND STRUCTURE IN KERAS

- Build the structure of your network.
- Compile the model, specifying your loss function, metrics, and optimizer (which includes the learning rate).
- Fit the model on your training data (specifying batch size, number of epochs)
- Predict on new data
- Evaluate your results

A D F A B F A B F A B

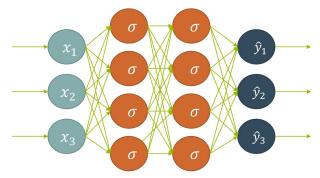
BUILDING THE MODEL

- Keras provides two approaches to building the structure of your model:
- Sequential Model: allows a linear stack of layers simpler and more convenient if model has this form
- Functional API: more detailed and complex, but allows more complicated architectures
- We will focus on the Sequential Model.

(日) (四) (日) (日) (日)

RUNNING EXAMPLE, THIS TIME IN KERAS

Let's build this Neural Network structure shown below in Keras:



э

KERAS—SEQUENTIAL MODEL

First, import the Sequential function and initialize your model object:

from keras.models import Sequential
model = Sequential()

э

A D N A B N A B N A B N

KERAS—SEQUENTIAL MODEL

Then we add layers to the model one by one.

from keras.layers import Dense, Activation

```
# For the first layer, specify the input dimension
model.add(Dense(units=4, input dim=3))
```

```
# Specify an activation function
model.add(Activation(sigmoid'))
```

```
# For subsequent layers, the input dimension is presumed from
# the previous layer
model.add(Dense(units=4))
model.add(Activation(sigmoid'))
model.add(Dense(units=3))
model.add(Activation('softmax'))
```

(日) (四) (日) (日) (日)

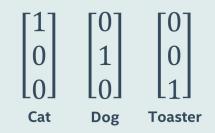
MULTICLASS CLASSIFICATION WITH NEURAL NETWORKS

- For binary classification problems, we have a final layer with a single node and a sigmoid activation.
- This has many desirable properties
 - Gives an output strictly between 0 and 1
 - Can be interpreted as a probability
 - Derivative is "nice"
 - Analogous to logistic regression

Is there a natural extension of this to a multiclass setting?

MULTICLASS CLASSIFICATION WITH NEURAL NETWORKS

- Reminder: one hot encoding for categories
- Take a vector with length equal to the number of categories
- Represent each category with one at a particular position (and zero everywhere else)



A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

MULTICLASS CLASSIFICATION WITH NEURAL NETWORKS

- For multiclass classification problems, let the final layer be a vector with length equal to the number of possible classes.
- Extension of sigmoid to multiclass is the softmax function.
- $softmax(z_i) = \frac{e^{z_i}}{\sum_{k=1}^{K} e^{z_k}}$
- Yields a vector with entries that are between 0 and 1, and sum to 1

イロト イヨト イヨト イヨト 三日

MULTICLASS CLASSIFICATION WITH NEURAL NETWORKS

- For loss function use "categorical cross entropy"
- This is just the log-loss function in disguise

$$C.E. = -\sum_{i=1}^{n} y_i \log(\hat{y}_i)$$

Derivative has a nice property when used with softmax

 $\frac{\partial C.E.}{\partial softmax} \cdot \frac{\partial softmax}{\partial z_i} = \hat{y}_i - y_i$

<日

<</p>

WAYS TO SCALE INPUTS

Linear scaling to the interval [0,1]

$$x_i = \frac{x_i - x_{min}}{x_{max} - x_{min}}$$

Linear scaling to the interval [-1,1]

$$x_i = 2\left(\frac{x_i - \bar{x}}{x_{max} - x_{min}}\right) - 1$$

イロト イポト イヨト イヨ

э

59 / 64

October 7, 2020

WAYS TO SCALE INPUTS

Standardization (making variable approx. std. normal)

$$x_i = \frac{x_i - \bar{x}}{\sigma}; \qquad \sigma = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - \bar{x})^2}$$

э

A D N A B N A B N A B N

• TensorFlow TensorFlow

э

イロト イヨト イヨト イヨト

- TensorFlow TensorFlow
 - Googles Tensorflow the most popular Deep Learning.

3

イロト イポト イヨト イヨト

- TensorFlow **TensorFlow**
 - Googles Tensorflow the most popular Deep Learning.

イロト イポト イヨト イヨト

October 7, 2020

61 / 64

• TF needs a lot of coding.

- TensorFlow TensorFlow
 - Googles Tensorflow the most popular Deep Learning.
 - TF needs a lot of coding.
- РуТогсh рутбасн

3

イロト 不得 トイヨト イヨト

- TensorFlow TensorFlow
 - Googles Tensorflow the most popular Deep Learning.
 - TF needs a lot of coding.
- РуТогсh рутбасн
 - Was developed for Facebook services

(日) (四) (日) (日) (日)

- TensorFlow TensorFlow
 - Googles Tensorflow the most popular Deep Learning.
 - TF needs a lot of coding.
- РуТогсh рутбасн
 - Was developed for Facebook services
 - In PyTorch, you can use standard debuggers, for example, pdb or PyCharm.

イロト イポト イヨト イヨト

- TensorFlow TensorFlow
 - Googles Tensorflow the most popular Deep Learning.
 - TF needs a lot of coding.
- РуТогсh рутбасн
 - Was developed for Facebook services
 - In PyTorch, you can use standard debuggers, for example, pdb or PyCharm.

• Sonnet 📚 Sonnet

< □ > < □ > < □ > < □ > < □ > < □ >

- TensorFlow TensorFlow
 - Googles Tensorflow the most popular Deep Learning.
 - TF needs a lot of coding.
- РуТогсh рутбасн
 - Was developed for Facebook services
 - In PyTorch, you can use standard debuggers, for example, pdb or PyCharm.

(4) (日本)

October 7, 2020

61/64

- Sonnet 📚 Sonnet
 - Built on top of TensorFlow.

- TensorFlow TensorFlow
 - Googles Tensorflow the most popular Deep Learning.
 - TF needs a lot of coding.
- РуТогсh рутбасн
 - Was developed for Facebook services
 - In PyTorch, you can use standard debuggers, for example, pdb or PyCharm.
- Sonnet 📚 Sonnet
 - Built on top of TensorFlow.
 - High-level object-oriented libraries.

・ 何 ト ・ ヨ ト ・ ヨ ト

- TensorFlow TensorFlow
 - Googles Tensorflow the most popular Deep Learning.
 - TF needs a lot of coding.
- РуТогсh рутбасн
 - Was developed for Facebook services
 - In PyTorch, you can use standard debuggers, for example, pdb or PyCharm.

・ 何 ト ・ ヨ ト ・ ヨ ト

October 7, 2020

- Sonnet 📚 Sonnet
 - Built on top of TensorFlow.
 - High-level object-oriented libraries.
- Keras Keras

- TensorFlow TensorFlow
 - Googles Tensorflow the most popular Deep Learning.
 - TF needs a lot of coding.
- РуТогсh рутбасн
 - Was developed for Facebook services
 - In PyTorch, you can use standard debuggers, for example, pdb or PyCharm.
- Sonnet 📚 Sonnet
 - Built on top of TensorFlow.
 - High-level object-oriented libraries.
- Keras Keras
 - The best Deep Learning framework for those who are just starting out.

(4) (日本)

- TensorFlow TensorFlow
 - Googles Tensorflow the most popular Deep Learning.
 - TF needs a lot of coding.
- РуТогсh рутбасн
 - Was developed for Facebook services
 - In PyTorch, you can use standard debuggers, for example, pdb or PyCharm.
- Sonnet 📚 Sonnet
 - Built on top of TensorFlow.
 - High-level object-oriented libraries.
- Keras Keras
 - The best Deep Learning framework for those who are just starting out.
 - High level like Sonnet.

< □ > < □ > < □ > < □ > < □ > < □ >

- TensorFlow TensorFlow
 - Googles Tensorflow the most popular Deep Learning.
 - TF needs a lot of coding.
- РуТогсh рутбасн
 - Was developed for Facebook services
 - In PyTorch, you can use standard debuggers, for example, pdb or PyCharm.
- Sonnet 📚 Sonnet
 - Built on top of TensorFlow.
 - High-level object-oriented libraries.
- Keras Keras
 - The best Deep Learning framework for those who are just starting out.
 - High level like Sonnet.
- MXNet ^{mxnet}

(4) (日本)

- TensorFlow TensorFlow
 - Googles Tensorflow the most popular Deep Learning.
 - TF needs a lot of coding.
- РуТогсh рутбасн
 - Was developed for Facebook services
 - In PyTorch, you can use standard debuggers, for example, pdb or PyCharm.
- Sonnet 📚 Sonnet
 - Built on top of TensorFlow.
 - High-level object-oriented libraries.
- Keras Keras
 - The best Deep Learning framework for those who are just starting out.

- High level like Sonnet.
- MXNet ^{mxnet}
 - Effectively parallel on multiple GPUs and many machines..

● Gluon [©]GLUON</sup>

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Gluon [©]GLUON</sup>
 - Gluon is based on MXNet and offers a simple API that simplifies the creation of deep learning models.

イロト イポト イヨト イヨト

October 7, 2020

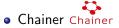
- Gluon [©]GLUON</sup>
 - Gluon is based on MXNet and offers a simple API that simplifies the creation of deep learning models.

イロト 不得 トイヨト イヨト

- Gluon ^C GLUON
 GLUON
 GLUON
 CON
 CON
 - Gluon is based on MXNet and offers a simple API that simplifies the creation of deep learning models.
- Swift 🔌 swift
 - Swift for Tensorflow.

< □ > < 同 > < 回 > < 回 > < 回 >

- Gluon ^C GLUON
 GLUON
 GLUON
 CON
 CON
 - Gluon is based on MXNet and offers a simple API that simplifies the creation of deep learning models.
- Swift 🎽 swift
 - Swift for Tensorflow.



< □ > < 同 > < 回 > < 回 > < 回 >

- Gluon ^C GLUON
 GLUON
 GLUON
 CON
 CON
 - Gluon is based on MXNet and offers a simple API that simplifies the creation of deep learning models.
- Swift 🄌 swift
 - Swift for Tensorflow.
- Chainer Chainer
 - The code is written in pure Python on top of the Numpy and CuPy libraries. (fast)

< □ > < 同 > < 回 > < 回 > < 回 >

- Gluon ^C GLUON
 GLUON
 GLUON
 CON
 CON
 - Gluon is based on MXNet and offers a simple API that simplifies the creation of deep learning models.
- Swift 🎽 swift
 - Swift for Tensorflow.
- Chainer Chainer
 - The code is written in pure Python on top of the Numpy and CuPy libraries. (fast)

< □ > < □ > < □ > < □ > < □ > < □ >

October 7, 2020

62 / 64

• DL4J 🖗 DL4J

- Gluon ^C GLUON
 GLUON
 GLUON
 CON
 CON
 - Gluon is based on MXNet and offers a simple API that simplifies the creation of deep learning models.
- Swift 🎽 swift
 - Swift for Tensorflow.
- Chainer Chainer
 - The code is written in pure Python on top of the Numpy and CuPy libraries. (fast)
- DL4J 🖗 DL4J
 - Deep Learning for Java.

< □ > < □ > < □ > < □ > < □ > < □ >

- Gluon ^C GLUON
 GLUON
 GLUON
 CON
 CON
 - Gluon is based on MXNet and offers a simple API that simplifies the creation of deep learning models.
- Swift 🎽 swift
 - Swift for Tensorflow.
- Chainer Chainer
 - The code is written in pure Python on top of the Numpy and CuPy libraries. (fast)
- DL4J 🖗 DL4J
 - Deep Learning for Java.
- ONNX 🖗 ONNX

· < /⊒ > < ∃ > < ∃

- - Gluon is based on MXNet and offers a simple API that simplifies the creation of deep learning models.
- Swift 🄌 swift
 - Swift for Tensorflow.
- Chainer Chainer
 - The code is written in pure Python on top of the Numpy and CuPy libraries. (fast)
- DL4J 🖗 DL4J
 - Deep Learning for Java.
- ONNX 🖗 ONNX
 - Enables models to be trained in one framework and transferred to another for inference.

< □ > < 同 > < 回 > < 回 > < 回 >

October 7, 2020

References

https://software.intel.com/content/www/us/en/develop/training

October 7, 2020 63 / 64

3

イロト イヨト イヨト イヨト

- 2

64 / 64

October 7, 2020

