Introduction to Neural Networks

Dr. Mahmoud N Mahmoud mnmahmoud@ncat.edu

North Carolina A & T State University

September 30, 2020

• • • • • • • • • •

э

1/52

September 30, 2020

2 FeedForward Neural Network

3 Activation Functions

< □ > < 同 > < 回 > < 回 > < 回 >

æ

Outline

FeedForward Neural Network

September 30, 2020 3 / 52

æ

< □ > < □ > < □ > < □ > < □ >

Introduction

- One of the oldest and one of the newest machine learning models.
- Goes back to 1940, when people started to build modles the imitate the human brain.
- Logistic regression (perceptron) is the core of neural networks started in 1950.
- However, scientists in that time showed that a single perceptron can not solve xor problem (died).
- Reborn in 1980, discovery of merging perceptrons together. But died due to the resources requirements
- Reborn in the last decade with the advancement of the computation resouces.

- 4 回 ト 4 三 ト 4 三 ト

Xor Problem

Linear classifiers cannot solve this X₂

э

<ロト <問ト < 目と < 目と

Neurons and the brain

MOTIVATION FOR NEURAL NETS

- Use biology as inspiration for mathematical model
- Get signals from previous neurons
- Generate signals (or not) according to inputs
- Pass signals on to next neurons
- By layering many neurons, can create complex model

< 1 k

イロト イヨト イヨト

・ロト ・日下・ ・日下

• • • • • • • • • •

э

Structure of a node

Squashing/Activation function limits node output:

3

・ロト ・四ト ・ヨト ・ヨト

< □ > < /□ >

< □ > < /□ >

< 4 ₽ × <

IN VECTOR NOTATION

z = "net input"

b = "bias term"

f = activation function

a = output to next layer

$$z = b + \sum_{i=1}^{m} x_i w_i$$
$$z = b + x^T w$$
$$a = f(z)$$

September 30, 2020 16 / 52

3

・ロト ・四ト ・ヨト ・ヨト

RELATION TO LOGISTIC REGRESSION

When we choose: $f(z) = \frac{1}{1+e^{-z}}$

$$z = b + \sum_{i=1}^{m} x_i w_i = x_1 w_1 + x_2 w_2 + \dots + x_m w_m + b$$

Then a neuron is simply a "unit" of logistic regression! weights ⇔ coefficients inputs ⇔ variables bias term ⇔ constant term

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

RELATION TO LOGISTIC REGRESSION

This is called the "sigmoid" function: $\sigma(z) = \frac{1}{1 + e^{-z}}$

э

NICE PROPERTY OF SIGMOID FUNCTION

$$\begin{split} \sigma(z) &= \frac{1}{1 + e^{-z}} & \text{Quotient rule} \\ \sigma'(z) &= \frac{0 - (-e^{-z})}{(1 + e^{-z})^2} &= \frac{e^{-z}}{(1 + e^{-z})^2} & \frac{\frac{d}{dx} \cdot \frac{f(x)}{g(x)} = \frac{f'(x)g(x) - f(x)g'(x)}{g(x)^2}}{g(x)^2} \\ &= \frac{1 + e^{-z} - 1}{(1 + e^{-z})^2} &= \frac{1 + e^{-z}}{(1 + e^{-z})^2} - \frac{1}{(1 + e^{-z})^2} \\ &= \frac{1}{1 + e^{-z}} - \frac{1}{(1 + e^{-z})^2} &= \frac{1}{1 + e^{-z}} \left(1 - \frac{1}{1 + e^{-z}}\right) \\ \sigma'(z) &= \sigma(z) \left(1 - \sigma(z)\right) & \text{This will be helpful!} \end{split}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

< 行

э

< 行

September 30, 2020 22 / 52

< 行

< 行

WHY NEURAL NETS?

- Why not just use a single neuron? Why do we need a larger network?
- A single neuron (like logistic regression) only permits a linear decision boundary.
- Most real-world problems are considerably more complicated!

Outline

2 FeedForward Neural Network

September 30, 2020 26 / 52

æ

Artificial NNs

• ANNs incorporate the two fundamental components of biological neural nets.

< □ > < □ > < □ > < □ > < □ > < □ >

September 30, 2020

3

- Neurones (nodes)
- Synapses (weights)

Types of Layers

The input layer

- Introduces input values into the network.
- No activation function or other processing.
- 2 The hidden layer(s)
 - Perform classification of features
 - Two hidden layers are sufficient to solve any problem
- The output layer
 - Functionally just like the hidden layers
 - Outputs are passed on to the world outside the neural network.

- A - E

September 30, 2020

< 行

э

- Can think of it as a complicated computation engine
- We will "train it" using our training data
- Then (hopefully) it will give good answers on new data

Solving XOR with a Neural Network

3

< □ > < □ > < □ > < □ > < □ > < □ >

FEEDFORWARD NEURAL NETWORK

æ

WEIGHTS

3

INPUT LAYER

3

HIDDEN LAYERS

3

OUTPUT LAYER

3

WEIGHTS (REPRESENTED BY MATRICES)

э

NET INPUT (SUM OF WEIGHTED INPUTS, BEFORE ACTIVATION FUNCTION)

э

< 回 > < 三 > < 三 >

ACTIVATIONS (OUTPUT OF NEURONS TO NEXT LAYER)

э

Working with Matrices

- Three features.
- One input at the time.

Working with Matrices

- Three features.
- Four inputs at the time.

э. September 30, 2020 40 / 52

Feed Forward Properties

- Input dimension: No of features × No of Samples in the Batch
- Weight dimension at (just before) layer L: No of neurons in layer L × No of neurons in layer (L-1)

September 30, 2020

41 / 52

• Data dimension at layer L: No of neurons in layer L × No of Samples in the Batch.

FeedForward Equations

- **3** $\mathbf{Z}^{L} = \mathbf{W}^{L} \cdot \mathbf{X} + \mathbf{b}^{L} \Rightarrow$ Matrices Operations
- **2** $\mathbf{A}^{L} = \sigma(\mathbf{Z}^{L}) \Rightarrow$ Element wise Operations

Outline

FeedForward Neural Network

Activation Functions

September 30, 2020 42 / 52

2

Activation functions

Activation functions typically have the following properties:

- Non-linear: To model complex relationships
- **Continuously Differentiable:** To improve our model with gradient descent.
- Fixed Range Activation functions typically squash the input data into a narrow range that makes training the model more stable and efficient.

Linear Activation Function

- The stacking of linear functions introduce nothing new. All layers of the neural network collapse into one.
- No one use it.
- It can blow up the activation.

Linear Activation Function

< 47 ▶

Sigmoid / Logistic

- The stacking is possible.
- Smooth gradient.
- Outputs not zero centered.
- Computationally expensive.

イロト 不得下 イヨト イヨト 二日

TanH / Hyperbolic Tangent

- The stacking is possible.
- Smooth gradient.
- Zero centered output
- Gradinet is steeper than the sigmoid.
- Computationally expensive.

ReLU (Rectified Linear Unit)

- Computationally cheap.
- Suffer from the Dying ReLU problem when inputs approach zero, or are negative.
- Gradient not smooth.
- It can blow up the activation.

Leaky ReLU

- Computationally cheap.
- No Dying ReLU problem.
- Sometimes results are not consistent.
- Gradient not smooth.
- It can blow up the activation.

Multi-Class Neural Networks: Softmax Activation

Softmax extends binary logistic regression idea (probability adds upto 1) into a multi-class world.

- It helps training converge more quickly than it otherwise would.
- Usually have better performance against one vs. all classification.

$$p(y=j|\mathbf{z}) = \frac{e^{\mathbf{w}_j^T \mathbf{z} + b_j}}{\sum\limits_{k \in \mathcal{K}} e^{\mathbf{w}_k^T \mathbf{z} + b_k}}$$

- K is the number of classes. (j and k ∈ K)
- z is the input vector.
- **w**_(.) is the weight vector associated with each output neuron.

< ロト < 同ト < ヨト < ヨト

September 30, 2020

Multi-Class Neural Networks: Softmax Activation

Softmax extends binary logistic regression idea (probability adds upto 1) into a multi-class world.

- It helps training converge more quickly than it otherwise would.
- Usually have better performance against one vs. all classification.

$$p(y=j|\mathbf{z}) = \frac{e^{\mathbf{w}_j^T \mathbf{z} + b_j}}{\sum\limits_{k \in K} e^{\mathbf{w}_k^T \mathbf{z} + b_k}}$$

- K is the number of classes. (j and k ∈ K)
- z is the input vector.
- w_(.) is the weight vector associated with each output neuron.

Why this ugly forumla?

Now we know how feedforward NNs do Computations.

Next, we will learn how to adjust the weights to learn from data.

э

・ロト ・四ト ・ヨト ・ヨト

References

https://software.intel.com/content/www/us/en/develop/training

イロト イポト イヨト イヨト

2

