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Model Generalization

Overfitting and Underfitting (1/2)

Note

A good model (best fit) should be able to generalize to new (unseen)
data. How?
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Model Generalization

Overfitting and Underfitting (2/2)

Over-fitting:
Model too complex (flexible)
Fits noise in the training data
High error is expected on the test data.

Under-fitting:
Model too simplistic (too rigid)
Not powerful enough to capture salient patterns in training data and
test data.

Note

A good model (best fit) should be able to generalize to new (unseen)
data. How?
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Model Generalization

What is Bias?

Bias is the difference between the Predicted Value and the Expected
Value of our training data.

Weak models have High Bias as the error on the training set is
expected to be high.

High bias means ”Underfitting” and Low Bias means ”Overfitting”.

In KNN, Describe the bias for k=1 and k=N
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Model Generalization

What is Variance?

Variance is the difference between the Predicted Value and the
Expected Value for future datasets.

Strong models in training phase have High Variance as they are not
flexible for slight future changes.

High Variance means ”Overfitting” and Low Variance means
”Underfitting”.

In KNN, Describe the Variance for k=1 and k=N
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Model Generalization

Bias vs Variance Tradeoff
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Model Generalization

Training and Test Sets

To measure how our model generalize, we split our data to

Training set a subset to train a model.
Test set a subset to evaluate the trained model Estimeate
Generalization.

The test should:

be large enough to yield statistically meaningful results.
be representative of the data set as a whole.
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Model Generalization

Beyond Test Set: Validation Set

What if we have several model to compare and pick only one?

Adding or removing features

Trying different model complexities (linear, quadratic, etc)

...

More chances to Overfit. Less chances to Overfit.
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Model Generalization

K-Cross Validation

Why?

We can be exposed to the test set only once.

We need to estimate future error as accurately as possible.

Ex.

Randomly split the training
into k sets.

Validate on one in each turn
(train on 4 others)

Average the results over 5 folds
5-fold cross validation
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Model Generalization

Training vs. Generalization Error (3/3)
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Model Generalization

Training vs. Generalization Error (1/3)

Training Error: It measures how we are performing on the training set
(same as loss).

Etrain =
1

∣Dtrain ∣
∑

(x,y)∈Dtrain

error(f (x), y)

Generalization Error:

How well we will do on any kind future data from the same
distribution.

Egen = ∫

(x,y)∈D

error(f (x), y) p(x, y)
´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶

How often we see (x,y) pair

dx

Can never compute generalization error practically
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Model Generalization

Training vs. Generalization Error (2/3)

Test Error:

Introduced to estimate the generalization error.

That is why we should be exposed to test set only once.

Etest =
1

∣Dtest ∣
∑

(x,y)∈Dtest

error(f (x), y)

How close Egen to Etest? depends on ∣Dtest ∣.

lim
∣Dtest ∣→∞

Etest ≈ Egen
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Training vs. Generalization Error (3/3)
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Introduction to Linear Regression

Linear Regression

Linear Regression

Linear regression attempts to model the relationship between two variables
by fitting a linear equation to observed data

Example: Scientists found that crickets (an insect species) chirp more fre-
quently on hotter days than on cooler days.
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Introduction to Linear Regression

Linear Regression

A linear relationship

True, the line doesn’t pass through every dot.

However, the line does clearly show the relationship between chirps
and temperature.

y = mx + b

where:

y: is the temperature in Celsiusthe value we’re trying to predict.

m: is the slope of the line.

x: is the number of chirps per minutethe value of our input feature.

b: is the y-intercept.
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Introduction to Linear Regression

Linear Regression

In machine learning, we’ll write the equation for a model slightly differently:

y ′ = w1x1 +w0

where:

y’: is the predicted label (a desired output).

w1: is the weight of feature 1. Weight is the same concept as the
”slope”.

x1: is feature 1.

w0 or b: is the bias (the y-intercept).

Notethat

A model that relies on three features might look as follows:

y ′ = w3x3 +w2x2 +w1x1 +w0
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Introduction to Linear Regression Training and Loss

Training and Loss

Training a model simply means learning (determining) good values
for all the weights and the bias from labeled examples.

Loss is the penalty for a bad prediction.
Perfect prediction means the loss is zero
Bad model have large loss.

Suppose we selected the following weights and biases.

Which of them have lower loss?
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Introduction to Linear Regression Training and Loss

Squared loss

The linear regression models use a popular loss function called
squared loss.

Also known as L2.

Is represented as follows:

[obsevation(x) − prediction(x)]2

= (y − y ′)2

Why squared loss?
Can we do absolute loss?
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Introduction to Linear Regression Training and Loss

Mean square error (MSE)

Is the average squared loss per example over the whole dataset.

MSE= 1
N ∑

(x ,y)∈D
(y − prediction(x))2

(x,y) is an example in which

y is the label
x is a feature

prediction(x) is equal y ′ = w1x +w0

D is the dataset that contains all (x,y) pairs

N is the number of samples in D
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Introduction to Linear Regression Reducing Loss

Reducing Loss

Training is a feedback process that use the loss function to improve
the model parameters.
The training is an iterative process.

Two Questions

What initial values should we set for w1 and w0?

How to update w1 and w0?
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Introduction to Linear Regression Reducing Loss

Gradient Descent (1/3)

Assume (for symplicity) we are only concerned with finding w1.

Assume we had the time and the computing resources to calculate
the loss for all possible values of w1.

Regression problems yield convex
loss vs. weight plots.
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Introduction to Linear Regression Reducing Loss

Gradient Descent (2/3)

Gradient descent enables you to find the optimal w without
computing for all possible values.
Gradient descent has the following steps

1 Pick a random starting point for w
2 Calculates the gradient of the loss curve at w .
3 Update w
4 go to 2, till convergence
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Introduction to Linear Regression Reducing Loss

Gradient Descent (3/3)

Note that a gradient is a
vector, so it has both of the
following characteristics:

Magnitude

Direction

wnew = wold − η ∗
d loss
dw
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Introduction to Linear Regression Reducing Loss

Gradient Descent (3/3)

The gradient descent
algorithm takes a step in the
direction of the negative
gradient

wnew = wold − η ∗
d loss
dw
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Introduction to Linear Regression Reducing Loss

Gradient Descent (3/3)

the gradient descent algorithm
adds some fraction of the
gradient’s magnitude (Learning
Rate η) to the previous point

wnew = wold − η ∗
d loss
dw
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Introduction to Linear Regression Reducing Loss

Convergence Criteria

For convex functions, optimum occurs when

∣
d loss
dw

∣ = 0

In practice, stop when

∣
d loss
dw

∣ ≤ ε
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Introduction to Linear Regression Reducing Loss

Learning rate

Gradient descent algorithms multiply the gradient by a scalar known
as the learning rate (also sometimes called step size) .

How can we choose the learning rate?
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Learning rate

Gradient descent algorithms multiply the gradient by a scalar known
as the learning rate (also sometimes called step size) .

How can we choose the learning rate?

Small Learning Rate
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Introduction to Linear Regression Reducing Loss

Learning rate

Gradient descent algorithms multiply the gradient by a scalar known
as the learning rate (also sometimes called step size) .

How can we choose the learning rate?

Large Learning Rate
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Introduction to Linear Regression Reducing Loss

Learning rate

Gradient descent algorithms multiply the gradient by a scalar known
as the learning rate (also sometimes called step size) .

How can we choose the learning rate?

Optimal Learning Rate usually (0.01)
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Introduction to Linear Regression Reducing Loss

Generalization and Gradient

For n features: y ′ =
i=n

∑

i=0
wixi

Note w0 is the bias (intercept), and x0 = 1.

vector representation y’ = wTx

Loss = ` = (y − y ′)2

Gradient derivation

d`

dwi
=

d`

dy ′
dy ′

dwi

= [2(y − y ′) ∗ xi ∗ (−1)]
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Advanced Linear Regression

References

Intel Nervana AI Academy

https://software.intel.com/content/www/us/en/develop/training
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