Model Generalization

Dr. Mahmoud N Mahmoud mnmahmoud@ncat.edu

North Carolina A & T State University

September 4, 2020

< □ > < 同 > < 回 > < 回 > < 回 >

э

1/84

September 4, 2020

Introduction to Linear Regression

イロト イヨト イヨト イヨト

æ

2/84

September 4, 2020

3 Advanced Linear Regression

Outline

2) Introduction to Linear Regression

Advanced Linear Regression

э

< □ > < 同 > < 回 > < 回 > < 回 >

K VALUE AFFECTS DECISION BOUNDARY

< 行

CHOOSING BETWEEN DIFFERENT COMPLEXITIES

< 1 k

HOW WELL DOES THE MODEL GENERALIZE?

< 1 k

UNDERFITTING VS OVERFITTING

э

A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A
A
A

Overfitting and Underfitting (1/2)

Note

A good model (best fit) should be able to generalize to new (unseen) data. How?

Overfitting and Underfitting (2/2)

• Over-fitting:

- Model too complex (flexible)
- Fits noise in the training data
- High error is expected on the test data.

• Under-fitting:

- Model too simplistic (too rigid)
- Not powerful enough to capture salient patterns in training data and test data.

Note

A good model (best fit) should be able to generalize to new (unseen) data. How?

BIAS-VARIANCE TRADEOFF

A B A B
A B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

• Bias is the difference between the Predicted Value and the Expected Value of our training data.

3

イロト イヨト イヨト

- Bias is the difference between the Predicted Value and the Expected Value of our training data.
- Weak models have High Bias as the error on the training set is expected to be high.

3

イロト イポト イヨト イヨト

- Bias is the difference between the Predicted Value and the Expected Value of our training data.
- Weak models have High Bias as the error on the training set is expected to be high.
- High bias means "Underfitting" and Low Bias means "Overfitting".

- 4 回 ト 4 ヨ ト 4 ヨ ト

- Bias is the difference between the Predicted Value and the Expected Value of our training data.
- Weak models have High Bias as the error on the training set is expected to be high.
- High bias means "Underfitting" and Low Bias means "Overfitting".
- In KNN, Describe the bias for k=1 and k=N

- 4 回 ト 4 三 ト 4 三 ト

• Variance is the difference between the Predicted Value and the Expected Value for future datasets.

3

< □ > < 同 > < 回 > < 回 > < 回 >

- Variance is the difference between the Predicted Value and the Expected Value for future datasets.
- Strong models in training phase have High Variance as they are not flexible for slight future changes.

< (17) > < (17) > <

- Variance is the difference between the Predicted Value and the Expected Value for future datasets.
- Strong models in training phase have High Variance as they are not flexible for slight future changes.
- High Variance means "Overfitting" and Low Variance means "Underfitting".

- Variance is the difference between the Predicted Value and the Expected Value for future datasets.
- Strong models in training phase have High Variance as they are not flexible for slight future changes.
- High Variance means "Overfitting" and Low Variance means "Underfitting".
- In KNN, Describe the Variance for k=1 and k=N

Bias vs Variance Tradeoff

Model Complexity

・ロト ・四ト ・ヨト ・ヨト

September 4, 2020

2

13/84

TRAINING AND TEST SPLITS

Г	Date	Title	Budget	DomesticTotalGross	Director	Rating	Runtime
0	2013-11-22	The Hunger Games: Catching Fire	130000000	424668047	Francis Lawrence	PG-13	146
1	2013-05-03	Iron Man 3	200000000	409013994	Shane Black	PG-13	129
2	2013-11-22	Frozen	150000000	400738009	Chris BuckJennifer Lee	PG	108
3	2013-07-03	Despicable Me 2	76000000	368061265	Pierre CoffinChris Renaud	PG	98
4	2013-06-14	Man of Steel	225000000	291045518	Zack Snyder	PG-13	143
5	2013-10-04	Gravity	100000000	274092705	Alfonso Cuaron	PG-13	91
6	2013-06-21	Monsters University	NaN	268492764	Dan Scanlon	G	107
7	2013-12-13	The Hobbit: The Desolation of Smaug	NaN	258366855	Peter Jackson	PG-13	161
8	2013-05-24	Fast & Furious 6	160000000	238679850	Justin Lin	PG-13	130
9	2013-03-08	Oz The Great and Powerful	215000000	234911825	Sam Raimi	PG	127
10	2013-05-16	Star Trek Into Darkness	19000000	228778661	J.J. Abrams	PG-13	123
11	2013-11-08	Thor: The Dark World	170000000	206362140	Alan Taylor	PG-13	120
12	2013-06-21	World War Z	19000000	202359711	Marc Forster	PG-13	116
13	2013-03-22	The Croods	135000000	187168425	Kirk De MiccoChris Sanders	PG	98
14	2013-06-28	The Heat	43000000	159582188	Paul Feig	R	117
15	2013-08-07	We're the Millers	37000000	150394119	Rawson Marshall Thurber	R	110
16	2013-12-13	American Hustle	40000000	150117807	David O. Russell	R	138
17	2013-05-10	The Great Gatsby	105000000	144840419	Baz Luhrmann	PG-13	143

2

イロト イヨト イヨト イヨト

TRAINING AND TEST SPLITS

	Date	Title	Budget	DomesticTotalGross	Director	Rating	Runtime
0	2013-11-22	The Hunger Games: Catching Fire	130000000	424668047	Francis Lawrence	PG-13	146
1	2013-05-03	Iron Man 3	200000000	409013994	Shane Black	PG-13	129
2	2013-11-22	Frozen	150000000	400738009	Chris BuckJennifer Lee	PG	108
3	2013-07-03	Despicable Me 2	76000000	368061265	Pierre CoffinChris Renaud	PG	98
4	2013-06-14	Man of Steel	225000000	291045518	Zack Snyder	PG-13	143
5	2013-10-04	Gravity	10000000	274092705	Alfonso Cuaron	PG-13	91
6	2013-06-21	Monsters University	NaN	268492764	Dan Scanlon	G	107
7	2013-12-13	The Hobbit: The Desolation of Smaug	NaN	258366855	Peter Jackson	PG-13	161
в	2013-05-24	Fast & Furious 6	160000000	238679850	Justin Lin	PG-13	130
9	2013-03-08	Oz The Great and Powerful	215000000	234911825	Sam Raimi	PG	127
10	2013-05-16	Star Trek Into Darkness	190000000	228778661	J.J. Abrams	PG-13	123
11	2013-11-08	Thor: The Dark World	170000000	206362140	Alan Taylor	PG-13	120
12	2013-06-21	World War Z	190000000	202359711	Marc Forster	PG-13	116
13	2013-03-22	The Croods	135000000	187168425	Kirk De MiccoChris Sanders	PG	98
14	2013-06-28	The Heat	43000000	159582188	Paul Feig	R	117
15	2013-08-07	We're the Millers	37000000	150394119	Rawson Marshall Thurber	R	110
16	2013-12-13	American Hustle	40000000	150117807	David O. Russell	R	138
17	2013-05-10	The Great Gatsby	105000000	144840419	Baz Luhrmann	PG-13	143

3

<ロト < 四ト < 三ト < 三ト

Training and Test Sets

To measure how our model generalize, we split our data to

- Training set a subset to train a model.
- **Test set** a subset to evaluate the trained model Estimeate Generalization.

The test should:

- be large enough to yield statistically meaningful results.
- be representative of the data set as a whole.

fit the model

TEST DATA

TRAINING DATA

measure performance

- predict label with model
- compare with actual value
- measure error

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

< 47 ▶

< 47 ▶

Make predictions

< 1[™] >

Measure error

< 47 ▶

FITTING TRAINING AND TEST DATA

< 回 > < 三 > < 三

FITTING TRAINING AND TEST DATA

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

TRAIN AND TEST SPLITTING: THE SYNTAX

Import the train and test split function

from sklearn.model_selection import train_test_split

3

イロト イポト イヨト イヨト

TRAIN AND TEST SPLITTING: THE SYNTAX

Import the train and test split function

from sklearn.model_selection import train_test_split

Split the data and put 30% into the test set

train, test = train_test_split(data, test_size=0.3)

< □ > < □ > < □ > < □ > < □ > < □ >

TRAIN AND TEST SPLITTING: THE SYNTAX

Import the train and test split function

from sklearn.model_selection import train_test_split

Split the data and put 30% into the test set

train, test = train_test_split(data, test_size=0.3)

Other method for splitting data:

from sklearn.model selection import ShuffleSplit

・ロト ・四ト ・ヨト ・ヨト

Beyond Test Set: Validation Set

What if we have several model to compare and pick only one?

- Adding or removing features
- Trying different model complexities (linear, quadratic, etc)

K-Cross Validation

Why?

- We can be exposed to the test set only once.
- We need to estimate future error as accurately as possible.

Ex.

- Randomly split the training into k sets.
- Validate on one in each turn (train on 4 others)
- Average the results over 5 folds

5-fold cross validation

・ 同 ト ・ ヨ ト ・ ヨ

BEYOND A SINGLE TEST SET: CROSS VALIDATION

	Date	Title	Budget	DomesticTotalGross	Director	Rating	Runtime
0	2013-11-22	The Hunger Games: Catching Fire	130000000	424668047	Francis Lawrence	PG-13	146
1	2013-05-03	Iron Man 3	200000000	409013994	Shane Black	PG-13	129
2	2013-11-22	Frozen	150000000	400738009	Chris BuckJennifer Lee	PG	108
3	2013-07-03	Despicable Me 2	76000000	368061265	Pierre CoffinChris Renaud	PG	98
4	2013-06-14	Man of Steel	225000000	291045518	Zack Snyder	PG-13	143
5	2013-10-04	Gravity	10000000	274092705	Alfonso Cuaron	PG-13	91
6	2013-06-21	Monsters University	NaN	268492764	Dan Scanlon	G	107
7	2013-12-13	The Hobbit: The Desolation of Smaug	NaN	258366855	Peter Jackson	PG-13	161
8	2013-05-24	Fast & Furious 6	160000000	238679850	Justin Lin	PG-13	130
9	2013-03-08	Oz The Great and Powerful	215000000	234911825	Sam Raimi	PG	127
10	2013-05-16	Star Trek Into Darkness	190000000	228778661	J.J. Abrams	PG-13	123
11	2013-11-08	Thor: The Dark World	170000000	206362140	Alan Taylor	PG-13	120
12	2013-06-21	World War Z	190000000	202359711	Marc Forster	PG-13	116
13	2013-03-22	The Croods	135000000	187168425	Kirk De MiccoChris Sanders	PG	98
14	2013-06-28	The Heat	43000000	159582188	Paul Feig	R	117
15	2013-08-07	We're the Millers	37000000	150394119	Rawson Marshall Thurber	R	110
16	2013-12-13	American Hustle	40000000	150117807	David O. Russell	R	138
17	2013-05-10	The Great Gatsby	105000000	144840419	Baz Luhrmann	PG-13	143

э

BEYOND A SINGLE TEST SET: CROSS VALIDATION

	Date	Title	Budget	DomesticTotalGross	Director	Rating	Runtime
0	2013-11-22	The Hunger Games: Catching Fire	13000000	424668047	Francis Lawrence	PG-13	146
1	2013-05-03	Iron Man 3	200000000	409013994	Shane Black	PG-13	129
2	2013-11-22	Frozen	150000000	400738009	Chris BuckJennifer Lee	PG	108
3	2013-07-03	Despicable Me 2	76000000	368061265	Pierre CoffinChris Renaud	PG	98
4	2013-06-14	Man of Steel	225000000	291045518	Zack Snyder	PG-13	143
5	2013-10-04	Gravity	100000000	274092705	Alfonso Cuaron	PG-13	91
6	2013-06-21	Monsters University	NaN	268492764	Dan Scanlon	G	107
7	2013-12-13	The Hobbit: The Desolation of Smaug	NaN	258366855	Peter Jackson	PG-13	161
8	2013-05-24	Fast & Furious 6	160000000	238679850	Justin Lin	PG-13	130
9	2013-03-08	Oz The Great and Powerful	215000000	234911825	Sam Raimi	PG	127
10	2013-05-16	Star Trek Into Darkness	19000000	228778661	J.J. Abrams	PG-13	123
11	2013-11-08	Thor: The Dark World	170000000	206362140	Alan Taylor	PG-13	120
12	2013-06-21	World War Z	190000000	202359711	Marc Forster	PG-13	116
13	2013-03-22	The Croods	135000000	187168425	Kirk De MiccoChris Sanders	PG	98
14	2013-06-28	The Heat	43000000	159582188	Paul Feig	R	117
15	2013-08-07	We're the Millers	37000000	150394119	Rawson Marshall Thurber	R	110
16	2013-12-13	American Hustle	40000000	150117807	David O. Russell	R	138
17	2013-05-10	The Great Gatsby	105000000	144840419	Baz Luhrmann	PG-13	143

э
	Date	Title	Budget	DomesticTotalGross	Director	Rating	Runtime
0	2013-11-22	The Hunger Games: Catching Fire	130000000	424668047	Francis Lawrence	PG-13	146
1	2013-05-03	Iron Man 3	200000000	409013994	Shane Black	PG-13	129
2	2013-11-22	Frozen	150000000	400738009	Chris BuckJennifer Lee	PG	108
3	2013-07-03	Despicable Me 2	76000000	368061265	Pierre CoffinChris Renaud	PG	98
4	2013-06-14	Man of Steel	225000000	291045518	Zack Snyder	PG-13	143
5	2013-10-04	Gravity	100000000	274092705	Alfonso Cuaron	PG-13	91
6	2013-06-21	Monsters University	NaN	268492764	Dan Scanlon	G	107
7	2013-12-13	The Hobbit: The Desolation of Smaug	NaN	258366855	Peter Jackson	PG-13	161
8	2013-05-24	Fast & Furious 6	160000000	238679850	Justin Lin	PG-13	130
9	2013-03-08	Oz The Great and Powerful	215000000	234911825	Sam Raimi	PG	127
10	2013-05-16	Star Trek Into Darkness	19000000	228778661	J.J. Abrams	PG-13	123
11	2013-11-08	Thor: The Dark World	170000000	206362140	Alan Taylor	PG-13	120
12	2013-06-21	World War Z	19000000	202359711	Marc Forster	PG-13	116
13	2013-03-22	The Croods	135000000	187168425	Kirk De MiccoChris Sanders	PG	98
14	2013-06-28	The Heat	43000000	159582188	Paul Feig	R	117
15	2013-08-07	We're the Millers	37000000	150394119	Rawson Marshall Thurber	R	110
16	2013-12-13	American Hustle	40000000	150117807	David O. Russell	R	138
17	2013-05-10	The Great Gatsby	105000000	144840419	Baz Luhrmann	PG-13	143

TRAINING Data 3

э

	Date	Title	Budget	DomesticTotalGross	Director	Rating	Runtime
0	2013-11-22	The Hunger Games: Catching Fire	130000000	424668047	Francis Lawrence	PG-13	146
1	2013-05-03	Iron Man 3	200000000	409013994	Shane Black	PG-13	129
2	2013-11-22	Frozen	150000000	400738009	Chris BuckJennifer Lee	PG	108
3	2013-07-03	Despicable Me 2	76000000	368061265	Pierre CoffinChris Renaud	PG	98
4	2013-06-14	Man of Steel	225000000	291045518	Zack Snyder	PG-13	143
5	2013-10-04	Gravity	10000000	274092705	Alfonso Cuaron	PG-13	91
6	2013-06-21	Monsters University	NaN	268492764	Dan Scanlon	G	107
7	2013-12-13	The Hobbit: The Desolation of Smaug	NaN	258366855	Peter Jackson	PG-13	161
8	2013-05-24	Fast & Furious 6	160000000	238679850	Justin Lin	PG-13	130
9	2013-03-08	Oz The Great and Powerful	215000000	234911825	Sam Raimi	PG	127
10	2013-05-16	Star Trek Into Darkness	190000000	228778661	J.J. Abrams	PG-13	123
11	2013-11-08	Thor: The Dark World	170000000	206362140	Alan Taylor	PG-13	120
12	2013-06-21	World War Z	190000000	202359711	Marc Forster	PG-13	116
13	2013-03-22	The Croods	135000000	187168425	Kirk De MiccoChris Sanders	PG	98
14	2013-06-28	The Heat	43000000	159582188	Paul Feig	R	117
15	2013-08-07	We're the Millers	37000000	150394119	Rawson Marshall Thurber	R	110
16	2013-12-13	American Hustle	40000000	150117807	David O. Russell	R	138
17	2013-05-10	The Great Gatsby	105000000	144840419	Baz Luhrmann	PG-13	143

TRAINING Data 4

э

э

A D N A B N A B N A B N

Average cross validation results

3

A D N A B N A B N A B N

Training vs. Generalization Error (3/3)

Model Complexity

<ロ> <四> <四> <四> <四> <四</p>

Training vs. Generalization Error (1/3)

Training Error: It measures how we are performing on the training set (same as loss).

$$E_{train} = \frac{1}{|D_{train}|} \sum_{(\mathbf{x}, y) \in D_{train}} error(f(\mathbf{x}), y)$$

Generalization Error:

• How well we will do on any kind future data from the same distribution.

$$E_{gen} = \int_{(\mathbf{x}, y) \in D} error(f(\mathbf{x}), y) \underbrace{p(\mathbf{x}, y)}_{\text{How often we see } (x, y) \text{ pair}} d\mathbf{x}$$

Can never compute generalization error practically

イロト 不得下 イヨト イヨト 二日

Training vs. Generalization Error (2/3)

Test Error:

- Introduced to estimate the generalization error.
- That is why we should be exposed to test set only once.

$$E_{test} = \frac{1}{|D_{test}|} \sum_{(\mathbf{x}, y) \in D_{test}} error(f(\mathbf{x}), y)$$

• How close E_{gen} to E_{test} ? depends on $|D_{test}|$. $\lim_{|D_{test}| \to \infty} E_{test} \approx E_{gen}$

(人間) トイヨト イヨト ニヨ

Training vs. Generalization Error (3/3)

Model Complexity

<ロ> <四> <四> <四> <四> <四</p>

э

September 4, 2020 40 / 84

э

э

Underfitting: training and cross validation error are high

A D N A B N A B N A B N

Overfitting: training error is low, cross validation is high

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Just right: training and cross validation errors are low

CROSS VALIDATION: THE SYNTAX

Import the train and test split function

from sklearn.model_selection import cross_val_score

3

CROSS VALIDATION: THE SYNTAX

Import the train and test split function

from sklearn.model_selection import cross_val_score

Perform cross-validation with a given model

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

CROSS VALIDATION: THE SYNTAX

Import the train and test split function

from sklearn.model_selection import cross_val_score

Perform cross-validation with a given model

Other methods for cross validation:

from sklearn.model_selection import KFold, StratifiedKFold

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

2 Introduction to Linear Regression

э

INTRODUCTION TO LINEAR REGRESSION

$$y_{\beta}(x) = \beta_0 + \beta_1 x$$

< 行

э

Linear Regression

Linear Regression

Linear regression attempts to model the relationship between two variables by fitting a linear equation to observed data

Example: Scientists found that crickets (an insect species) chirp more frequently on hotter days than on cooler days.

Linear Regression

A linear relationship

- True, the line doesn't pass through every dot.
- However, the line does clearly show the relationship between chirps and temperature.

$$y = mx + b$$

where:

- y: is the temperature in Celsiusthe value we're trying to predict.
- m: is the slope of the line.
- x: is the number of chirps per minutethe value of our input feature.
- b: is the y-intercept.

Linear Regression

In machine learning, we'll write the equation for a model slightly differently:

$$y' = w_1 x_1 + w_0$$

where:

- y': is the predicted label (a desired output).
- *w*₁: is the weight of feature 1. Weight is the same concept as the "slope".
- x₁: is feature 1.
- w₀ or b: is the bias (the y-intercept).

Notethat

A model that relies on three features might look as follows:

$$y' = w_3 x_3 + w_2 x_2 + w_1 x_1 + w_0$$

September 4, 2020

52 / 84

Training and Loss

- **Training** a model simply means learning (determining) good values for all the weights and the bias from labeled examples.
- Loss is the penalty for a bad prediction.
 - Perfect prediction means the loss is zero
 - Bad model have large loss.
- Suppose we selected the following weights and biases.

September 4, 2020

53 / 84

Squared loss

- The linear regression models use a popular loss function called squared loss.
- Also known as L₂.
- Is represented as follows:

$$[obsevation(x) - prediction(x)]^2 = (y - y')^2$$

3

Squared loss

- The linear regression models use a popular loss function called squared loss.
- Also known as L₂.
- Is represented as follows:

$$[obsevation(x) - prediction(x)]^2 = (y - y')^2$$

Why squared loss?

э

Squared loss

- The linear regression models use a popular loss function called squared loss.
- Also known as L₂.
- Is represented as follows:

$$[obsevation(x) - prediction(x)]^2 = (y - y')^2$$

Why squared loss? Can we do absolute loss?

< □ > < 同 > < 回 > < 回 > < 回 >

Mean square error (MSE)

• Is the average squared loss per example over the whole dataset.

$$MSE = \frac{1}{N} \sum_{(x,y) \in D} (y - prediction(x))^2$$

- (x,y) is an example in which
 - y is the label
 - x is a feature
- prediction(x) is equal $y' = w_1 x + w_0$
- D is the dataset that contains all (x,y) pairs
- N is the number of samples in D

- 4 回 ト 4 三 ト 4 三 ト

Reducing Loss

- **Training** is a feedback process that use the loss function to improve the model parameters.
- The training is an iterative process.

Two Questions

- What initial values should we set for w_1 and w_0 ?
- How to update w_1 and w_0 ?

Gradient Descent (1/3)

- Assume (for symplicity) we are only concerned with finding w_1 .
- Assume we had the time and the computing resources to calculate the loss for all possible values of w_1 .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Gradient Descent (1/3)

- Assume (for symplicity) we are only concerned with finding w_1 .
- Assume we had the time and the computing resources to calculate the loss for all possible values of *w*₁.

Gradient Descent (2/3)

- Gradient descent enables you to find the optimal *w* without computing for all possible values.
- Gradient descent has the following steps

 - ② Calculates the gradient of the loss curve at w.
 - Opdate w
 - go to 2, till convergence

Gradient Descent (3/3)

Note that a gradient is a vector, so it has both of the following characteristics:

- Magnitude
- Direction

$$w_{new} = w_{old} - \eta * \frac{d \ loss}{dw}$$

э

< /□ > < Ξ

Gradient Descent (3/3)

The gradient descent algorithm takes a step in the direction of the negative gradient

$$w_{new} = w_{old} - \eta * \frac{d \ loss}{dw}$$

3

Gradient Descent (3/3)

the gradient descent algorithm adds **some fraction** of the gradient's magnitude (Learning Rate η) to the previous point

< □ > < □ > < □ > < □ > < □ > < □ >

$$w_{new} = w_{old} - \eta * \frac{d \ loss}{dw}$$

3

Convergence Criteria

• For convex functions, optimum occurs when

•
$$\left|\frac{d \ loss}{dw}\right| = 0$$

• In practice, stop when

•
$$\left|\frac{d \ loss}{dw}\right| \le \epsilon$$

3

< □ > < 同 > < 回 > < 回 > < 回 >

Learning rate

- Gradient descent algorithms multiply the gradient by a scalar known as the learning rate (also sometimes called step size).
- How can we choose the learning rate?

< □ > < □ > < □ > < □ > < □ > < □ >
Learning rate

- Gradient descent algorithms multiply the gradient by a scalar known as the learning rate (also sometimes called step size) .
- How can we choose the learning rate?

Small Learning Rate

・ 何 ト ・ ヨ ト ・ ヨ ト

Learning rate

- Gradient descent algorithms multiply the gradient by a scalar known as the learning rate (also sometimes called step size) .
- How can we choose the learning rate?

Large Learning Rate

Learning rate

- Gradient descent algorithms multiply the gradient by a scalar known as the learning rate (also sometimes called step size).
- How can we choose the learning rate?

Optimal Learning Rate usually (0.01)

Generalization and Gradient

• For n features:
$$y' = \sum_{i=0}^{i=n} w_i x_i$$

- Note w_0 is the bias (intercept), and $x_0 = 1$.
- vector representation $\mathbf{y}' = \mathbf{w}^T \mathbf{x}$
- Loss = $\ell = (y y')^2$
- Gradient derivation

$$\frac{d\ell}{dw_i} = \frac{d\ell}{dy'} \frac{dy'}{dw_i}$$
$$= [2(y - y') * x_i * (-1)]$$

イロト 不得 トイヨト イヨト 二日

COMPARING LINEAR REGRESSION AND KNN

LINEAR REGRESSION	K NEAREST NEIGHBORS
Fitting involves minimizing cost	 Fitting involves storing training
function (slow)	data (fast)

 Model has few parameters (memory efficient)

.

 Model has many parameters (memory intensive)

< □ > < □ > < □ > < □ > < □ > < □ >

COMPARING LINEAR REGRESSION AND KNN

LINEAR REGRESSION

- Fitting involves minimizing cost function (slow)
- Model has few parameters (memory efficient)
- Prediction involves calculation (fast)

- K NEAREST NEIGHBORS
- Fitting involves storing training data (fast)
- Model has many parameters (memory intensive)
- Prediction involves finding closest neighbors (slow)

< □ > < □ > < □ > < □ > < □ > < □ >

LINEAR REGRESSION: THE SYNTAX

Import the class containing the regression method

from sklearn.linear_model import LinearRegression

3

A D N A B N A B N A B N

LINEAR REGRESSION: THE SYNTAX

Import the class containing the regression method from sklearn.linear_model import LinearRegression

Create an instance of the class

```
LR = LinearRegression()
```

3

A D N A B N A B N A B N

LINEAR REGRESSION: THE SYNTAX

Import the class containing the regression method from sklearn.linear model import LinearRegression

Create an instance of the class

```
LR = LinearRegression()
```

Fit the instance on the data and then predict the expected value

```
LR = LR.fit(X_train, y_train)
y_predict = LR.predict(X_test)
```

・ロト ・回ト ・ヨト ・ヨト

Outline

3 Advanced Linear Regression

September 4, 2020 68 / 84

イロト イヨト イヨト イヨト

э

SCALING IS A TYPE OF FEATURE TRANSFORMATION

< 1 k

э

 Predictions from linear regression models assume residuals are normally distributed

< 個 → < Ξ

- Predictions from linear regression models assume residuals are normally distributed
- Features and predicted data are often skewed

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A

from numpy import log, log1p

from scipy.stats import boxcox

э

72 / 84

September 4, 2020

< 1 k

- Predictions from linear regression models assume residuals are normally distributed
- Features and predicted data are often skewed
- Data transformations can solve this issue

FEATURE TYPE

TRANSFORMATION

イロト イポト イヨト イヨト

Continuous: numerical values

э

FEATURE TYPE	TRANSFORMATION

Continuous: numerical values

Standard Scaling, Min-Max Scaling

< □ > < 同 > < 回 > < 回 > < 回 >

э

FEATURE TYPE

Continuous: numerical values

• Nominal: categorical, unordered features (True or False)

- TRANSFORMATION
- Standard Scaling, Min-Max Scaling

< □ > < □ > < □ > < □ > < □ > < □ >

One-hot encoding (0, 1)

from sklearn.preprocessing import LabelEncoder, LabelBinarizer, OneHotEncoder

FEATURE TYPE

- Continuous: numerical values
- Nominal: categorical, unordered features (True or False)
- Ordinal: categorical, ordered features (movie ratings)

- TRANSFORMATION
- Standard Scaling, Min-Max Scaling

77 / 84

- One-hot encoding (0, 1)
- Ordinal encoding (0, 1, 2, 3)

from sklearn.feature_extraction import DictVectorizer from pandas import get_dummies

 Capture higher order features of data by adding polynomial features

 $y_{\beta}(x) = \beta_0 + \beta_1 x + \beta_2 x^2$

Budget

▲ 同 ▶ → 三 ▶

September 4, 2020 78 / 84

- Capture higher order features of data by adding polynomial features
- "Linear regression" means linear combinations of features

$$y_{\beta}(x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3$$

Budget

September 4, 2020 79 / 84

- Capture higher order features of data by adding polynomial features
- "Linear regression" means linear combinations of features

$$y_{\beta}(x) = \beta_0 + \beta_1 x + \beta_2 x^2$$

Budget

< 1 k

- Capture higher order features of data by adding polynomial features
- "Linear regression" means linear combinations of features

 $y_{\beta}(x) = \beta_0 + \beta_1 \log(x)$

Budget

< 1 k

Can also include variable interactions

 $y_{\beta}(x) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$

3

・ロト ・四ト ・ヨト ・ヨト

References

https://software.intel.com/content/www/us/en/develop/training

э

・ロト ・四ト ・ヨト ・ヨト

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <