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So What is Machine Learning?

@ Automating automation

o Getting computers to program themselves

@ Writing software is the bottleneck
o Let the data do the work instead!

Traditional Programming

Data —»
Computer
Program —»

— Output

Machine Learning

Data ——»
Computer [ Program
Qutput —»
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Introduction to Machine Learning

WHAT IS MACHINE LEARNING?
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Machine Learning Problem Types

o Based on Type of Data

e Supervised, Unsupervised, Semi supervised, Reinforcement Learning
o Based on Type of Output

o Regression, Classification
o Based on Type of Model

o Generative, Discriminative



Types of Learning based on Type of Data

@ Supervised learning

e Training data includes desired outputs.

e Trying to learn a relation between input data and the output
@ Unsupervised learning

e Training data does not include desired outputs.

e Trying to understand the data.
@ Semi supervised learning

e Training data includes a few desired outputs.
@ Reinforcement learning
e Rewards from sequence of actions.
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Introduction to Machine Learning

SUPERVISED LEARNING OVERVIEW

Data with + Model Fit m
answers

Data without m | predict Predicted
answers answers
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Types of Learning based on Type of Output

Regression
A regression model predicts continuous values. J

For example:

@ What is the value of a house in California?
@ What is the probability that a user will click on this ad?

Classification
A classification model predicts discrete values. J

For example:
@ Is a given email message spam or not spam?

@ Is this an image of a dog, a cat, or a hamster?



Introduction to Machine Learning

Regression vs Classification

Classification (supervised learning)
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Introduction to Machine Learning

REGRESSION: NUMERICAL ANSWERS

Movie data with + Model Fit m
revenue

Moviedata m | predict —» Predicted
(unknown revenue) revenue
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Introduction to Machine Learning

CLASSIFICATION: CATEGORICAL ANSWERS

Labeled

+ woae — e —> [
data
Unlabeled + m — Predict — Labels
data
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Introduction to Machine Learning

CLASSIFICATION: CATEGORICAL ANSWERS

Emails labeled as .
spam/not spam + Model Fit m
Unlabeled m | predict —» Spamor
emails not spam
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Types of Learning based on Type of Model

Generative Model
A Generative nodel explicitly learns the actual distribution of each class.

v

Discriminative Model
A Discriminative model learns the decision boundary between the classes.

v

Discriminative Models

Generative Models @ Logistic regression
@ Nave Bayes e SVMs
o Hidden Markov Models @ Traditional neural networks
o Bayesian networks @ Nearest neighbor
@ Markov random fields @ Conditional Random Fields
(CRF)

.
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ML Terminologies

ML Basic Terminologies

Many terminologies associated with ML. Will cover them in the following
slides.

o Labels
o Features
@ Examples
o Models



Label

@ A label is the thing that we are predicting in classification or
regression task. Example: Male, Female

@ The label could also be the future price of wheat, the kind of animal
shown in a picture, the meaning of an audio clip, or just about
anything.

@ Usually denoted with the variable y.



Features (1/2)

@ A feature is an input variable (a.k.a attribute).

@ A simple machine learning project might use a single feature, while a
more sophisticated machine learning project could use millions of
features.

@ Usually denoted as:
X1, XDy vy XN
In the spam detector example, the features could include the following:
@ words in the email text
@ sender’s address

@ time of day the email was sent



ML Terminologies

Features (2/2)

Generally three types of attributes:
o Categorical: red, blue, brown, yellow
@ Ordinal: poor, satisfactory, good, excellent
@ Numeric: 3.14, 6E23, 0,

Categorical

@ No natural
ordering to
categories

o Categories usually

Ordinal

@ There is a natural
ordering to
categories

@ Encoded as

encoded as numbers to
numbers preserve ordering
Notethat

The process of generating this features for our machine learning problem is

called feature engineering.

Numeric
@ Integers or real
numbers
@ meaningful to
add, mul tiply,
compute

v
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ML Terminologies

Data samples (Examples)

Data sample / Example is a particular instance of data, x. (Note That.

is a vector of features)

We break examples into two categories:
o Labeled examples: (Used for prediction)

@ Unlabeled examples: (Used for inference/testing)

Example
housingMedianAge medianHouseValue
(feature) (feature) (feature) (label)
15 5612 1283 66900
19 7650 1901 80100
17 720 174 85700
14 1501 337 73400
20 1454 326 65500
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Model

A model defines a relationship between features and label.

Two phases of a model’s life:

o Training means creating or learning the model. You show the model
labeled examples and enable the model to gradually learn the
relationships between features and label.

e Testing/Inference means applying the trained model to unlabeled
examples. You use the trained model to make useful predictions (y').
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ML Application 1: Credit Approval

Numeric Features:

o loan amount (e. g. $1000)

o Income (e. g. $65000)
Ordinal Features:

e savings: {none, <100, 100..500, 500..1000, >1000}

o employed: {unemployed, <1yr, 1..4yrs, 4. 7yrs, >Tyrs}
o Categorical Features:

e purpose: {car, appliance, repairs, education, business}

o personal: {single, married, divorced, separated}
Labels (Categorical):

e Approve credit application
o Disapprove credit application

Easy feature engineering process.



ML Application 2: Handwritten Digits Recognation

Represent each pixel as a X =}(1.X2'"X20X21X'")|(400

separate attribute either W |
Categorical OR Ordinal: 1 J
o Categorical Features:

o (white) or (black) based
on a threshold

@ Ordinal Features:

o Degree of "blackness” of
a pixel

HEN

o Labels (Categorical):
{0,1,2,3,4,5,6,7,8,9} HEEE I

What if we are dealing with paper like this qj;’)/j;z ?
Isolate each digit, rescale, de-slant, ..
Hard feature engineering process.
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ML Applications Examples

MACHINE LEARNING VOCABULARY
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Applications Examples

MACHINE LEARNING VOCABULARY
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ations Examples

MACHINE LEARNING VOCABULARY
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ML Applications Examples

MACHINE LEARNING VOCABULARY

= Target: predicted category or value of the data
(column to predict)

= Features: properties of the data used for prediction
(non-target columns)

] August 28, 2020
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ations Examples

MACHINE LEARNING VOCABULARY

/
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ML Applications Examples

MACHINE LEARNING VOCABULARY

= Target: predicted category or value of the data
(column to predict)

= Features: properties of the data used for prediction
(non-target columns)

= Example: a single data point within the data
(one row)
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ations Examples

MACHINE LEARNING VOCABULARY

Examples > |
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ML Applications Examples

MACHINE LEARNING VOCABULARY

= Target: predicted category or value of the data
(column to predict)

= Features: properties of the data used for prediction
(non-target columns)

= Example: a single data point within the data
(one row)

= Label: the target value for a single data point
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ations Examples

MACHINE LEARNING VOCABULARY
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Outline

@ K-nearest Neighbours

B — August 28,2020 34 /81



K-nearest Neighbours

WHAT IS CLASSIFICATION?

A flower shop wants to
guess a customer's
purchase from similarity to
most recent purchase.
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K-nearest Neighbours

WHAT IS CLASSIFICATION? %
Which flower is a % *

customer most likely to

purchase based on «/ \ (,
similarity to previous eﬁs*é\? /, N
purchase? ﬂw )
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K-nearest Neighbours

WHAT IS CLASSIFICATION? %
Which flower is a % *

customer most likely to

purchase based on «/ \ (,
similarity to previous eﬁs*é\? /, N
purchase? ﬂw )
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K-nearest Neighbours

WHAT IS CLASSIFICATION? %
Which flower is a % *

customer most likely to b
purchase based on N«'// (
similarity to previous [

purchase?

G
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K-nearest Neighbours

WHAT IS CLASSIFICATION? %
Which flower is a % *

customer most likely to

purchase based on i \ (,
similarity to previous eé*é\\ / N\
purchase? ﬂw )
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WHAT IS NEEDED FOR CLASSIFICATION?
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WHAT IS NEEDED FOR CLASSIFICATION?
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K-nearest Neighbours

WHAT IS NEEDED FOR CLASSIFICATION?
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K NEAREST NEIGHBORS CLASSIFICATION
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K-nearest Neighbours

KNEAREST NEIGHBORS CLASSIFICATION

@ Ssurvived

@ Did not survive

Age

60

40

20

P [
10 20

Number of Malignant Nodes
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K-nearest Neighbours

K NEAREST NEIGHBORS CLASSIFICATION
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K-nearest Neighbours

KNEAREST NEIGHBORS CLASSIFICATION

Neighbor Count (K = 1): 60 ° o L Py
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K-nearest Neighbours

KNEAREST NEIGHBORS CLASSIFICATION
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K-nearest Neighbours

KNEAREST NEIGHBORS CLASSIFICATION

Neighbor Count (K =3): g0  J
o > @ ® ®
"X O o ® o
® - w ®0% e ®© 0%y °
e ° : ° ° .
® O P o
. [ )
¢ Predict — ® r.1—><>. ¢
O e 60 o
0 10 20

Number of Malignant Nodes

August 28, 2020

48 /81



K-nearest Neighbours

KNEAREST NEIGHBORS CLASSIFICATION

Neighbor Count (K =4): g0  J
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WHAT IS NEEDED TO SELECT A KNN MODEL?
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K-nearest Neighbours

WHAT IS NEEDED TO SELECT A KNN MODEL?

= Correct value for 'K’ 60

= How to measure
closeness of
i ?
neighbors? 40
Age
20

10

20

Number of Malignant Nodes
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K-nearest Neighbours

K NEAREST NEIGHBORS DECISION BOUNDARY
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K-nearest Neighbours

KNEAREST NEIGHBORS DECISION BOUNDARY
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K-nearest Neighbours

VALUE OF ‘K" AFFECTS DECISION BOUNDARY
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K-nearest Neighbours

VALUE OF ‘K" AFFECTS DECISION BOUNDARY
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Methods for determining 'K' will be discussed in next lesson
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K-nearest Neighbours

MEASUREMENT OF DISTANCE IN KNN
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K-nearest Neighbours

MEASUREMENT OF DISTANCE IN KNN
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K-nearest Neighbours

EUCLIDEAN DISTANCE
60 o
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K-nearest Neighbours

EUCLIDEAN DISTANCE (L2 DISTANCE)
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K-nearest Neighbours

MANHATTAN DISTANCE (L10R CITY BLOCK DISTANCE)
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K-nearest Neighbours

SCALE IS IMPORTANT FOR DISTANCE MEASUREMENT

60
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K-nearest Neighbours

SCALE IS IMPORTANT FOR DISTANCE MEASUREMENT
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K-nearest Neighbours

SCALE IS IMPORTANT FOR DISTANCE MEASUREMENT
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SCALE IS IMPORTANT FOR DISTANCE MEASUREMENT
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K-nearest Neighbours

SCALE IS IMPORTANT FOR DISTANCE MEASUREMENT
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K-nearest Neighbours

COMPARISON OF FEATURE SCALING METHODS

= Standard Scaler: Mean center data and scale to unit variance
= Minimum-Maximum Scaler: Scale data to fixed range (usually 0-1)

= Maximum Absolute Value Scaler: Scale maximum absolute value
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K-nearest Neighbours

FEATURE SCALING: THE SYNTAX

StandardScaler

August 28, 2020
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K-nearest Neighbours

FEATURE SCALING: THE SYNTAX

Import the class containing the scaling method

from sklearn.preprocessing import StandardScaler

Create an instance of the class
StdSc = StandardScaler ()

] August 28, 2020
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K-nearest Neighbours

FEATURE SCALING: THE SYNTAX

Import the class containing the scaling method

from sklearn.preprocessing import StandardScaler

Create an instance of the class
StdSc = StandardScaler ()

Fit the scaling parameters and then transform the data
StdSc = StdSc.fit (X data)

X scaled = KNN.transform(X data)

] August 28, 2020

69 /81



K-nearest Neighbours

FEATURE SCALING: THE SYNTAX

Import the class containing the scaling method

from sklearn.preprocessing import StandardScaler

Create an instance of the class
StdSc = StandardScaler ()

Fit the scaling parameters and then transform the data
StdSc = StdSc.fit (X data)

X scaled = KNN.transform(X data)

Other scaling methods exist: MinMaxScaler, MaxAbsScaler.
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K-nearest Neighbours

MULTICLASS KNN DECISION BOUNDARY
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K-nearest Neighbours

REGRESSION WITH KNN
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K-nearest Neighbours

CHARACTERISTICS OF A KNN MODEL

= Fast to create model because it simply stores data
= Slow to predict because many distance calculations

= Can require lots of memory if data set is large
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K-nearest Neighbours

K NEAREST NEIGHBORS: THE SYNTAX

|

KNeighborsClassifier
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K-nearest Neighbours

K NEAREST NEIGHBORS: THE SYNTAX

Import the class containing the classification method

from sklearn.neighbors import KNeighborsClassifier

Create an instance of the class
KNN = KNeighborsClassifier (n_neighbors=3)

] August 28, 2020
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K-nearest Neighbours

K NEAREST NEIGHBORS: THE SYNTAX

Import the class containing the classification method

from sklearn.neighbors import KNeighborsClassifier

Create an instance of the class
KNN = KNeighborsClassifier (n_neighbors=3)

Fit the instance on the data and then predict the expected value
KNN = KNN.fit (X data, y data)

y_predict = KNN.predict (X data)

] August 28, 2020
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K-nearest Neighbours

K NEAREST NEIGHBORS: THE SYNTAX

Import the class containing the classification method

from sklearn.neighbors import KNeighborsClassifier

Create an instance of the class
KNN = KNeighborsClassifier (n_neighbors=3)

Fit the instance on the data and then predict the expected value
KNN = KNN.fit (X data, y data)

y_predict = KNN.predict (X data)

The fit and predict/transform syntax will show up throughout the course.
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K-nearest Neighbours

K NEAREST NEIGHBORS: THE SYNTAX

Import the class containing the classification method

from sklearn.neighbors import KNeighborsClassifier

Create an instance of the class
KNN = KNeighborsClassifier (n_neighbors=3)

Fit the instance on the data and then predict the expected value
KNN = KNN.fit (X data, y data)

y_predict = KNN.predict (X data)

Regression can be done with KNeighborsRegressor.
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K-nearest Neighbours

References

@ Intel Nervana Al Academy

https://software.intel.com/content/www/us/en/develop/training
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Questions ?
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