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Why Federated Learning?

Enables multiple actors to build a common machine learning systems without
centralizing data and with privacy by default.
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Why Federated Learning?

Enables multiple actors to build a common machine learning systems without
centralizing data and with privacy by default.

@ Mobile devices are personal computer
o As of June 2019, 96% of Americans own a cellphone of some kind 1
@ Plethora of sensors

@ Privacy issues.

Challenges
@ Deep Learning is non-convex
@ millions of parameters

@ complex structure

'https://www.slicktext.com/blog/2019/10/smartphone-addiction-statistics/
October 28, 2020 4/25



Why Federated Learning?

Current Machine Learning as a Service for Mobile Devices

The model lives in the cloud.
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Why Federated Learning?

Current Machine Learning as a Service for Mobile Devices
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Why Federated Learning?

Current Machine Learning as a Service for Mobile Devices

Gather training data
in the cloud.
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Why Federated Learning?

Current Machine Learning as a Service for Mobile Devices

And make the models better.
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Why Federated Learning?

On-device inference

On-device inference is using a cloud-distributed model to make predictions
directly on an edge device without a cloud round-trip

@ ML models in the data center (e.g., Forecasting weather)

@ ML models in the device (e.g., Keyboard suggestion)

B — T Y



Why Federated Learning?

On-device inference

Instead of making
predictions in the cloud
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Why Federated Learning?

On-device inference

Distribute the model,
make predictions on device.
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Why Federated Learning?

On-device inference

But how do we continue to
improve the model?

training
data
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Why Federated Learning?

On-device inference

Interactions generate B
training data on device...
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Why Federated Learning?

On-device inference

Which we gather to the 5
cloud.
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Why Federated Learning?

On-device inference

And make the model better.

(for everyone) oy S
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Why Federated Learning?

On-device inference

What about users privacy?
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Why Federated Learning?

On-device inference

Instead of centralizing 5
the training data...
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Why Federated Learning?

On-device inference

L /_ N
Train models right on the device. 5 *
Better for everyone (individually.)
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Why Federated Learning?

On-device inference

) But what about...
@ 1. New User Experience

2. Benefitting from
peers' data
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Why Federated Learning? Federated Learning Introduction

Federated Computation and Learning

Federated learning

Where a server coordinates a fleet of participating devices to compute
aggregated knowledge of devices private data.

Benefits:
@ Privacy
@ Global Model

@ On device inference (Communication Friendly)

] October 28, 2020  7/25
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Federated Learning

Federated Learning 5
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Federated Learning

Federated Learning 5

Many devices will be offline.

T

October 28, 2020 8/25



Why Federated Learning? Federated Learning Introduction

Federated Learning

Federated Learning

Many devices will be offline.

1. Server selects
a sample of e.g.
100 online

devices. @
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Why Federated Learning? Federated Learning Introduction

Federated Learning

Federated Learning

B

2. Selected devices 8

download the current
model parameters.
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Why Federated Learning? Federated Learning Introduction

Federated Learning

Federated Learning
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3. Devices compute an
update using local training
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Why Federated Learning? Federated Learning Introduction

Federated Learning

Federated Learning
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4. Server aggregates

users' updates into a @
new model. @
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Why Federated Learning? Federated Learning Introduction

Federated Learning

Federated Learning
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5. Repeat until
convergence
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Why Federated Learning? Federated Learning Introduction

Federated Learning

To make the model better.

(for everyone) T s
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Why Federated Learning? Federated Learning Introduction

Federated Learning
: »
And personalize it, ® 8@@
for every one. B Q
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Federated Learing Introduction
Characteristics/Challenges of Federated Learning

o Massively Distributed

] October 28, 2020 9/25



Federated Learing Introduction
Characteristics/Challenges of Federated Learning

o Massively Distributed
e Training data is stored across a very large number of devices

] October 28, 2020 9/25



Federated Learing Introduction
Characteristics/Challenges of Federated Learning

o Massively Distributed
e Training data is stored across a very large number of devices
o Limited Communication

B — T

9/25



Federated Learing Introduction
Characteristics/Challenges of Federated Learning

o Massively Distributed
e Training data is stored across a very large number of devices
o Limited Communication
e Only a handful of rounds of unreliable communication with each devices

B — TR



Federated Learing Introduction
Characteristics/Challenges of Federated Learning

o Massively Distributed

e Training data is stored across a very large number of devices
o Limited Communication

e Only a handful of rounds of unreliable communication with each devices
o Unbalanced Data

B — TR



Federated Learing Introduction
Characteristics/Challenges of Federated Learning

o Massively Distributed

e Training data is stored across a very large number of devices
o Limited Communication

e Only a handful of rounds of unreliable communication with each devices
o Unbalanced Data

e Some devices have few examples, some have orders of magnitude more

B — TR



Federated Learing Introduction
Characteristics/Challenges of Federated Learning

Massively Distributed

e Training data is stored across a very large number of devices
o Limited Communication

e Only a handful of rounds of unreliable communication with each devices
Unbalanced Data

e Some devices have few examples, some have orders of magnitude more

Highly Non-1ID Data

B — R



Federated Learing Introduction
Characteristics/Challenges of Federated Learning

Massively Distributed

e Training data is stored across a very large number of devices
o Limited Communication

e Only a handful of rounds of unreliable communication with each devices
Unbalanced Data

e Some devices have few examples, some have orders of magnitude more
Highly Non-1ID Data

o Data on each device reflects one individual's usage pattern

B — R



Federated Learning Introduction
Characteristics/Challenges of Federated Learning

Massively Distributed

e Training data is stored across a very large number of devices
o Limited Communication

e Only a handful of rounds of unreliable communication with each devices
Unbalanced Data

e Some devices have few examples, some have orders of magnitude more
Highly Non-1ID Data

o Data on each device reflects one individual's usage pattern
Unreliable Compute Nodes

B — R



Federated Learning Introduction
Characteristics/Challenges of Federated Learning

Massively Distributed

e Training data is stored across a very large number of devices
o Limited Communication

e Only a handful of rounds of unreliable communication with each devices
Unbalanced Data

e Some devices have few examples, some have orders of magnitude more
Highly Non-1ID Data

o Data on each device reflects one individual's usage pattern
Unreliable Compute Nodes

e Devices go offline unexpectedly; expect faults and adversaries

B — TR



Federated Learning Introduction
Characteristics/Challenges of Federated Learning

Massively Distributed

e Training data is stored across a very large number of devices
o Limited Communication

e Only a handful of rounds of unreliable communication with each devices
Unbalanced Data

e Some devices have few examples, some have orders of magnitude more
Highly Non-1ID Data

o Data on each device reflects one individual's usage pattern
Unreliable Compute Nodes

e Devices go offline unexpectedly; expect faults and adversaries

Dynamic Data Availability

B — TR



Federated Learning Introduction
Characteristics/Challenges of Federated Learning

Massively Distributed

e Training data is stored across a very large number of devices
o Limited Communication

e Only a handful of rounds of unreliable communication with each devices
Unbalanced Data

e Some devices have few examples, some have orders of magnitude more
Highly Non-1ID Data

o Data on each device reflects one individual's usage pattern
Unreliable Compute Nodes

e Devices go offline unexpectedly; expect faults and adversaries

Dynamic Data Availability

e The subset of data available is non-constant, e.g. time-of-day vs.
country
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Federated Leaming Introduction
Applications of Federating Learning

Federated learning will find a room to exist when:
@ On-device data is more relevant than server-side proxy data
@ On-device data is privacy sensitive or large
Examples of some application?
@ Language modeling for mobile keyboards and voice recognition
Medical diagnosis

o
@ Mobile face recognition
o

B — T (L



Why Federated Learning? Federated Learning Introduction

The Federated Averaging Algorithm

Server

Until Converged:

1. Select a random subset (e.g. 1000) of the (online) clients

2. In parallel, send current parameters 6, to those clients

Selected Client k
. Receive Bt from server.

. Run some number of minibatch SGD steps,
producing 6°'

. Return to server.

= 6, + data-weighted average of client updates

6

&

H. B. McMahan, et al.
Communication-Efficient Learning of
Deep Networks from Decentralized
Data. AISTATS 2017
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Why Federated Learning? Concerns in Federated Learning

Concerns in Federated Learning

Federated Learning

8
584
8

Server aggregates users'
updates into a new model.
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Concerns in Federated Learning

Federated Learning
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Why Federated Learning? Concerns in Federated Learning

Concerns in Federated Learning

Federated Learning

1. Ephemeral
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Concerns in Federated Learning
Federated Learning

1. Ephemeral

2. Focused
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Why Federated Learning? Concerns in Federated Learning

Concerns in Federated Learning

Federated Learning

1. Ephemeral
2. Focused

3. Only in Aggregate
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Secure Aggregation
Secure Aggregation

Wouldn't it be great if...

@;@?@’ :

Server aggregates users'
updates canne pect

@
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Secure Aggregation
Secure Aggregation

Secure Aggregation protocols aims to protect the privacy of the updates
sent by the clients to the aggregator by letting the aggregator able only
to calculate the aggregate update but not able to access the individual

updates?

2https:/ /storage.googleapis.com /pub-tools-public-publication-
data/pdf/ae87385258d90b9e48377ed49d83d467b45d5776.pdf
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Secure Aggregation
Secure Aggregation

Random positive/negative pairs, aka antiparticles

Devices cooperate to sample random @
pairs of 0-sum perturbations vectors. A

3y
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Secure Aggregation
Secure Aggregation

Random positive/negative pairs, aka antiparticles

Devices cooperate to sample random @
pairs of 0-sum perturbations vectors. A 4 A
A
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Secure Aggregation
Secure Aggregation

Add antiparticles before sending to the server
B

/ VA
VA @

A V- A;‘@
V+ A+

Each contribution looks
random on its own...
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Secure Aggregation
Secure Aggregation

The antiparticles cancel when summing contributions

@
VA
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Each contribution looks
random on its own...

but paired antiparticles
cancel out when summed.
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Secure Aggregation
Secure Aggregation

Revealing the sum.

VA

N /
~ @3 .
]

Each contribution looks
random on its own...

but paired antiparticles %
cancel out when summed.
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SalclerEeape
Problems in this approach

There are two main problems.

/VA
1. These vectors are big! I \
How do users agree efficiently?
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2. What if someone drops out?
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SalclerEeape
Problems in this approach

There are two main problems.

2. What if someone drops out?
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Secure Aggregation
Secure Aggregation Protocol (Addressing First Problem)

Pairwise Diffie-Hellman Key Agreement
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Secure Aggregation
Secure Aggregation Protocol (Addressing First Problem)

Pairwise Diffie-Hellman Key Agreement

Public parameters: g, (mod p) g
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Secure Aggregation
Secure Aggregation Protocol (Addressing First Problem)

Pairwise Diffie-Hellman Key Agreement

Because g* are public, we can
share them via the server.

«
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o

«Q Q
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Secure Aggregation
Secure Aggregation Protocol (Addressing First Problem)

Pairwise Diffie-Hellman Key Agreement

gb g° b
g g
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Secure Aggregation
Secure Aggregation Protocol (Addressing First Problem)

Pairwise Diffie-Hellman Key Agreement

g @

g
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Secure Aggregation
Secure Aggregation Protocol (Addressing First Problem)

Pairwise Diffie-Hellman Key Agreement

Commutative op
- Shared secret!
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Secure Aggregation
Secure Aggregation Protocol (Addressing First Problem)

Pairwise Diffie-Hellman Key Agreement + PRNG Expansion

Secrets are scalars, but.... a

Use each secret to seed a
pseudorandom number generator,
generate paired antiparticle vectors.

PRNG(g"?) — va Shared secret!
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Secure Aggregation
Secure Aggregation Protocol (Addressing Second Problem)

How to enable online users to recover the secrets of any user that may go
offline?
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Secure Aggregation
Secure Aggregation Protocol (Addressing Second Problem)

How to enable online users to recover the secrets of any user that may go
offline?

Using k-out-of-n Threshold Secret Sharing
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Secure Aggregation
k-out-of-n Threshold Secret Sharing

k-out-of-n Threshold Secret Sharing

Goal: Break a secret into n pieces, called shares.
e <k shares: learn nothing
e =k shares: recover s perfectly.

2-out-of-3 secret sharing: \
\

A
—~
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Secure Aggregation
k-out-of-n Threshold Secret Sharing

k-out-of-n Threshold Secret Sharing

Goal: Break a secret into n pieces, called shares.
e <k shares: learn nothing
e >k shares: recover s perfectly

N
X =

e

~ \ ~ s
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Secure Aggregation
Secure Aggregation Protocol (Addressing Second Problem)

Users make shares of their secrets
a
=
4+

kb
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Secure Aggregation
Secure Aggregation Protocol (Addressing Second Problem)

And exchange with their peers

J:H\\
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Secure Aggregation
Secure Aggregation Protocol (Addressing Second Problem)
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Why Federated Learning? Secure Aggregation

Secure Aggregation Protocol (Addressing Second Problem)
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Why Federated Learning? Secure Aggregation

Secure Aggregation Protocol (Addressing Second Problem)
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Secure Aggregation
Secure Aggregation Protocol (Addressing Second Problem)
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Enough honest users + a high enough threshold

= dishonest users cannot reconstruct the secret. @
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Secure Aggregation
Secure Aggregation Protocol (Addressing Second Problem)
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Enough honest users + a high enough threshold
= dishonest users cannot reconstruct the secret. %
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Secure Aggregation
Secure Aggregation Protocol (Addressing Second Problem)
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Secure Aggregation
Secure Aggregation Protocol (Addressing Second Problem)

Summary for Secure Aggregation

e Diffie Hellman: Used for efficient keys (secrets) sharing among
participants

@ k-out-of-n Threshold secret sharing: Used to make the algorithm
resilience to the drop out of any participant

B — TR



Differential Privacy
Differential Privacy

Federated Learning

Might the final

model memorize a
user's data? 1. Ephemeral

2. Focused

s )

3 3. Only in Aggregate
R
@ 4. Differential Privacy

)

Might these updates
contain privacy-sensitive
data?
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Differential Privacy
Differential Privacy

Differential privacy is the statistical science of trying to learn as much as
possible about a group while learning as little as possible about any individual
in it.
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Differential Privacy
Differential privacy is the statistical science of trying to learn as much as
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Differential privacy is achieved by simply adding a gaussian noise to the data
or the output of the function we are protecting.

@ Local Differential Privacy
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Differential Privacy

Differential privacy is the statistical science of trying to learn as much as
possible about a group while learning as little as possible about any individual
in it.
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Why Federated Learning? Differential Privacy

Differential Privacy

Differential privacy is the statistical science of trying to learn as much as
possible about a group while learning as little as possible about any individual
in it.

Differential privacy is achieved by simply adding a gaussian noise to the data
or the output of the function we are protecting.
@ Local Differential Privacy
o f(x1,..., %) =X; X
o fx1 + N1, .oy xn+ NG =3(x + N7)
@ Global Differential Privacy
o (X1, ..., %) =2iX
o f(x1, - yXn)=Yixi+ N

Note

Adding noise should be done with caution. We consider function
Sensitivity.
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Differential Privacy
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Why Federated Learning? Differential Privacy

Differential Privacy

Differential Privacy
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Differentially-Private Federated Averaging3

Server

Until Converged:
1. Select a random subset (e.g. C=100) of the (online) clients

2. In parallel, send current parameters O, to those clients
Selected Client k
. Receive 8, from server.

. Run some number of minibatch SGD steps,
producing 6'

. Return 6'-8, to server.

8, + data-weighted average of client updates

3McMahan, Ramage, Talwar, Zhang. Learning Differentially Private Recurrent
Language Models.
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Differentially-Private Federated Averaging3

Server

Until Converged:
1. Select each user independently with probability q, for say E[C]=1000 clients

2. In parallel, send current parameters @, to those clients
Selected Client k
1. Receive 8, from server.

2. Run some number of minibatch SGD steps,
producing 6'

3. Return Clip(e'-8,) to server. 6,

3. 6 = 0, + bounded sensitivity data-weighted average of client updates
+ Gaussian noise N(@, Ic?)

3McMahan, Ramage, Talwar, Zhang. Learning Differentially Private Recurrent
Language Models.
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Why Federated Learning? Differential Privacy
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Questions ?
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