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Abstract—Deep Neural Networks (DNNs) have tremendous
potential in advancing the vision for self-driving cars. However,
the security of DNN models in this context leads to major safety
implications and needs to be better understood. We consider the
case study of steering angle prediction from camera images, using
the dataset from the 2014 Udacity challenge. We demonstrate for
the first time adversarial testing-time attacks for this application
for both classification and regression settings. We show that minor
modifications to the camera image (an L2 distance of 0.82 for one
of the considered models) result in mis-classification of an image
to any class of attacker’s choice. Furthermore, our regression
attack results in a significant increase in Mean Square Error
(MSE) – by a factor of 69 in the worst case.

I. INTRODUCTION

Advances in Machine Learning (ML) and Deep Neural Net-

works (DNNs) bring tremendous potential to make autonomous

vehicles a reality. In this setting, sensors such as camera,

light detection and ranging sensor (LiDAR), and Infrared (IR)

generate streams of real-time data. Envisioned ML applications

include: predicting road conditions by interacting with other

cars; recognizing risky road conditions; and assisting drivers in

taking safer decisions. For this highly-critical application, safety

is the major concern, but unfortunately ML algorithms are not

traditionally designed and evaluated from this perspective.

At the same time, the security of ML models at both training

and testing time has received lately a lot of attention. Initially,

adversarial attacks against supervised learning have been mostly

studied in the context of image classification systems [1]–[3].

But recently these attacks have been extended to other domains,

including cyber security [4] and speech recognition [5]. To

the best of our knowledge, though, adversarial attacks for

self-driving cars have not been addressed so far.

In this paper, we demonstrate that classification and regres-

sion models for self-driving car applications are also vulnerable

to adversarial evasion attacks at testing time. We consider the

case study of steering angle predicting from camera images,

using the dataset from the 2014 Udacity challenge 2 [6]. First,

we adapt the state-of-the-art Carlini and Wagner 2017 evasion

attack [7] to the classification problem of predicting steering

direction, using architectures inspired by two Convolutional

Neural Network (CNN) models that obtained good results in the

Udacity challenge [8], [9]. We show that minor modifications

to the camera image (an L2 distance of 0.82 for one of the

considered models) result in mis-classification of an image

to any class of attacker’s choice. Second, we design the first

testing-time attack for regression based on CNNs and test them

in the setting of this application. We show that our attacks

cause significant degradation to the Mean Square Error (MSE)

metric used to evaluate regression. In particular, our attack

increases the MSE of 10% of the images by a factor of more

than 20 compared to the setting without attack.
Our work calls for further research into the safety impli-

cations of these attacks in the self-driving car application

domain. As connected cars become more autonomous and new

technologies are developed for assisting drivers on the road, it

becomes of paramount importance to understand in depth the

security and safety of deep learning in this setting.

II. BACKGROUND AND THREAT MODEL

Background on connected cars. Modern cars are outfitted

with Electronic Control Units (ECUs) to control specific

functions on the car, such as the engine [10] and control-

ling brakes [11]. In connected cars, some of these ECUs

communicate outside of the car, such as for the infotainment

system, remote firmware patching, or on-board diagnostics [11].

While this adds functionality, it also opens them up to

attack. Furthermore, autonomous vehicles replace human-made

decisions with decisions made using sensor input from extra

cameras, LiDAR, RADAR, etc. These sensors communicate

with the control systems via their ECUs, over the CAN

bus. In a setting where ECUs have been compromised, lack

of authentication on the CAN bus makes it possible for a

compromised ECU to send messages as other sensors, such as

the camera.

Neural networks. A feed-forward neural network is a function

y = F (x) from input data points x ∈ Rn to output y ∈ Rm that

depends implicitly on model parameter θ. A neural network has

L layers, and the output F is computed by applying a function

at each layer. Each layer has a number of output neurons. In

each layer, a linear matrix multiplication is followed by a non-

linear activation function. For multi-class classification, the

last layer uses a softmax activation function with the number

of neurons equal to the number of classes. The inputs to

the softmax function are called logits. We define F to be

the full neural network including the softmax function, and

Z(x) = z to be the output of all layers except the softmax,

thus y = F (x) = softmax(Z(x)).
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Convolutional neural networks (CNNs) are a particular type

of feed-forward networks, with the requirement that at least

one of the layers performs a convolution operation followed

by a non-linear activation. A convolution is a linear operation

that slides a filter of small size over the output of the previous

layer and computes repeatedly dot products of the filter with

regions of the input data.

Udacity challenge. In the Udacity challenge 2 [6], the goal is

to predict the appropriate steering angle using only imagery

from the car’s center camera. A negative steering angle implies

turning left, while a positive one results in a right turn. The

full dataset consists of 33,608 images and their corresponding

steering angle values, in total 70GB of data.

Threat model. We consider an attacker who is capable

of controlling one or multiple ECUs. From here, lack of

authentication on the CAN bus can allow an adversary to spoof

messages from the camera [11]. The attacker can modify the

image sent by a camera, constructing an adversarial example

which will be misclassified by a steering angle controller for the

autonomous vehicle. We are concerned with an active attacker

with partial control of one or several car ECUs, interested in

generating a stealthy perturbation to images produced by the

camera. The reasons for which the attack wishes to remain

stealthy are multi-fold: (1) to avoid suspicion by humans

looking at the camera; (2) to avoid detection by anomaly

detection software for threat detection [12]. We consider the

strongest threat model (white-box attacks), which provides the

attacker full knowledge of the ML system.

III. ATTACK ALGORITHM

In this section we describe the evasion attack against DNNs

for steering angle prediction.

DNN architectures. A number of DNN models submitted to

the Udacity challenge 2 successfully predict steering angle

values, therefore solving the regression problem.
We first consider the classification problem of predicting

the car direction needed for predicting lane changes and

eventually the full vehicle trajectory [13]. Based on domain

expert recommendation, we select an angle threshold and

replace the exact value of the predicted angle with a class:

right if the steering angle exceeds the positive value of the

threshold; left if the steering angle is below the negative value

of the threshold; and straight otherwise. The car direction

prediction task takes as input the image camera and predicts

the direction the car should take. Second, we consider the

regression problem of predicting steering angles, identical to

the original challenge problem.
We select two Convolutional Neural Network models for

both the classification and regression problems. The first is the

Epoch model [8] (also used by DeepTest [14]), while the second

is inspired by Bojarski et al [9] (called NVIDIA model). The

Epoch model consists of 3 convolutional layers, and 2 fully-

connected layers (see Table I). The NVIDIA model has the

same number of convolutional layers and fully-connected layers

as Bojarski et al. [9], but less hidden units in the first fully-

connected layer to speed up training (see Table II). We adapted

Layer Architecture and Hyper-parameters

Convolutional + ReLU 32 filters of size 3× 3× 3
MaxPooling Filter 2× 2
Dropout Fraction 0.25
Convolutional + ReLU 64 filters of size 3× 3× 32
MaxPooling Filter 2× 2
Dropout Fraction 0.25
Convolutional + ReLU 128 filters of size 3× 3× 64
MaxPooling Filter 2× 2
Dropout Fraction 0.5
Fully-Connected + ReLU Neurons 1024
Dropout Fraction 0.5
Fully-Connected + Softmax Neurons 3

TABLE I: Epoch Model Architecture

Layer Architecture and Hyper-parameters

Batch Normalization Layer
Convolutional + ReLU 24 filters of size 5× 5× 3
Convolutional + ReLU 36 filters of size 5× 5× 24
Convolutional + ReLU 48 filters of size 5× 5× 36
Convolutional + ReLU 64 filters of size 3× 3× 48
Convolutional + ReLU 64 filters of size 3× 3× 64
Fully-Connected + ReLU Neurons 582
Fully-Connected + ReLU Neurons 100
Fully-Connected + ReLU Neurons 50
Fully-Connected + ReLU Neurons 10
Fully-Connected + Softmax Neurons 3

TABLE II: NVIDIA Model Architecture

both models for classification by adding a last layer with 3

hidden units and softmax activation function. The architecture

for regression is similar, excluding the last softmax layer. The

NVIDIA model is more complex (467 million parameters)

compared to the Epoch model (25 million parameters).

Fig. 1: Scaled steering angle histogram

Statistic Value

Minimum -2.05

Maximum 1.9

Mean -0.008

Std. dev. 0.27

TABLE III: Scaled steering

angle distribution

Parameter Value

Learning rate 0.01

Momentum 0.9

Batch size 128

Epochs 50

TABLE IV: Training hyper-

parameters

Evasion attacks against direction classification. We use the

L2 distance between the original and adversarial image to
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(a) Epoch model (b) NVIDIA model

Fig. 2: Success of attack with respect to distance

(a) Epoch model (b) NVIDIA model

Fig. 3: ROC curves for models with and without the attack.

measure the amount of perturbation introduced by the attack.

In this setting, the attacker adds negligible perturbations to all

image pixels. We also assume that image pixels are normalized

in [0, 1]. We leverage and adapt the state-of-art L2 attack by

Carlini and Wagner [7], proposed originally in the context of

image classification. The attack crafts adversarial examples by

solving the following optimization problem for an image x
with original class i to find the perturbation σ that transforms

it into a targeted class t �= i:

minimize ||σ||2 + c× f(x+ σ)
such that x+ σ ∈ [0, 1]d

f(x+ σ) = (max(Z(x+ σ)j �=t)− Z(x+ σ)t)
+

i - original class, t �= i - adversarial target class.

Here s+ is the notation for max(s, 0), The main intuition is

that the optimization objective includes two terms: a distance

norm of the adversarial perturbation and a loss function that

is minimized when the modified image is classified to the

target class t �= i. The hyper-parameter c controls the tradeoffs

between the amount of perturbation to the image and the attack

success of classifying to the target class.

Evasion attacks against steering angle regression predic-
tion. We are not aware of existing evasion attacks against

CNNs for regression. A regression model is typically evaluated

by the Mean Square Error (MSE) metric, defined either for

single points or over an entire dataset. MSE of a single point x
with response y ∈ R measures the squared residual (e.g.,

difference between the true response y and the predicted

response ŷ = F (x)). For a dataset, MSE is the average of the

squared residuals of all points. Our main insight is to adapt

the classification attack by changing the objective function to
maximize the MSE difference between the predicted response
on the adversarial image F (x+ σ) and the true response y.

This way, the attacker attempts to change the prediction on the

adversarial image further away from the true value.

Thus, in order to find the adversarial image for original

image x with response y, the attacker solves the following

optimization task with respect to the parameter σ:

minimize ||σ||2 − c× g(x+ σ, y)
such that x+ σ ∈ [0, 1]d

g(x+ σ, y) = (F (x+ σ)− y)2

Here c is a hyper-parameter that is found by binary

search; it controls the tradeoff between minimizing the image

perturbation versus maximizing the MSE value. Small values

of parameter c should be used when the goal of making

the resulting perturbation negligible is more important than

increasing the MSE of the adversarial image.
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(a) Input image, ’straight’ (b) Adversarial image, ’left’ (c) Adversarial image, ’right’

(d) Input image, ’left’ (e) Adversarial image, ’straight’ (f) Adversarial image, ’right’

(g) Input image, ’right’ (h) Adversarial image, ’straight’ (i) Adversarial image, ’left’

Fig. 4: Adversarial images for the Epoch classification model.

IV. EXPERIMENTS

Data. The training data consists of 33,608 images extracted

from the videos provided by the Udacity self-driving car

challenge 2. We apply image preprocessing as done by previous

work [8], [14]: crop the images from the original size (640×480
pixels) to 640×280, and resize the images to 128×128 pixels.

Each datapoint includes the steering angle at the moment the

image was captured. The steering angles in the Udacity data

set driving log were pre-scaled by a factor of 1/25 (see the

histogram of the scaled angles in Figure 1 and statistics on the

distribution in Table III).

To assign classification labels, we split the scaled angle

values into 3 intervals to obtain the 3 directions (left, straight,

and right). The histogram, as well as discussion with domain

experts, motivates the choice of the scaled angle threshold at

0.15, resulting in majority of labels to be straight (70%), and

15% of labels to be set as left and right, respectively.

Training results. We train both models using 10-fold cross

validation. The accuracy for classification is high: 90% for the

Epoch model and 86% for the NVIDIA model. The hyper-

parameters for both models are in Table IV. While it is possible

to improve the accuracy of the NVIDIA model further by using

regularization and parameter tuning, we did not pursue this

direction as being an orthogonal goal to our paper’s main

focus. For the regression problem, we only report results for

the Epoch model, on which we obtain MSE of 0.03.

Attack results for direction prediction. For testing the attack

we choose 300 images from all 3 classes, and select the 2 values

of the targeted class (different from original class), resulting

in 600 adversarial images. We found the optimal value for

the attack hyper-parameter c by running binary search for 9

steps with the initial value of c equal to 0.001. As expected,

if there are no constraints on adversary’s ability to manipulate

images, the adversarial success rate reaches 100%. Our goal is

to understand the minimum amount of L2 perturbation needed

for succeeding at generating adversarial examples.
The attacker success with respect to the amount of perturba-
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(a) Input image, ’straight’ (b) Adversarial image, ’left’ (c) Adversarial image, ’right’

(d) Input image, ’left’ (e) Adversarial image, ’straight’ (f) Adversarial image, ’right’

(g) Input image, ’right’ (h) Adversarial image, ’straight’ (i) Adversarial image, ’left’

Fig. 5: Adversarial images for the NVIDIA classification model.

tion is illustrated in Figures 2a and 2b. In the Epoch model,

a minimum modification to the image (0.82 L2 norm) results

in 100% attack success. However, the amount of perturbation

for NVIDIA is higher (121.01 L2 norm). We conjecture the

reason to be the additional complexity of the NVIDIA model,

resulting in a more robust architecture.

Finally, we study the impact of the attack on the models’

performance. The micro-average ROC curves with and without

the attack are in Figures 3a and 3b, respectively. False positive

rate for each class is the number of adversarial images classified

as this class. It could be easily seen that the model performance

decreases under attack (for instance, AUC decreases from 1 in

the no-attack scenario to 0.62 for 0.75 L2 norm perturbation

for the Epoch model).

In Figure 4 we show examples of original images (left), and

two corresponding adversarial images (center and right) for

the Epoch model. Similarly we show adversarial images for

the NVIDIA model in Figure 5. The images look very similar

to the original ones, but they become darker as the majority

of pixels incur minor modification (a result of our use of the

L2 distance). We thus demonstrate that we can modify images

from any source class to any targeted class. It took on average

around 5 and 25 seconds, respectively, to generate adversarial

image for the Epoch and NVIDIA models. This result confirms

that it takes longer to attack more complex models.

Attack results for steering angle prediction. For testing

the attack we choose 100 images. We found the optimal

value for the attack hyper-parameter c by binary search. As

expected, with higher values of c the attacker obtains adversarial

images with high MSE value. We found that the value of

hyperparameter c equal to 100 results in the most acceptable

tradeoff between MSE and amount of perturbation to the image.
In order to study the success of the attack, we calculate

the statistics of L2 norm perturbation values and adversarial

to legitimate MSE ratio. These are illustrated in Table V. We

observe that 90% of adversarial images have perturbation value

less than 0.57 L2 norm, which is very small. Additionally, our

attack results in significant changes to the MSE of adversarial
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Fig. 6: MSE CDF

Percentile MSE ratio Perturbation

10% 1.19 0.007

25% 1.38 0.02

50% 2.43 0.05

75% 6.31 0.29

90% 20.88 0.57

TABLE V: MSE ratio and L2 perturbation statistics

images. In particular, 10% of adversarial images have an

MSE value more than 20 times higher than the MSE value

of the corresponding legitimate image. The maximum ratio of

adversarial to legitimate MSE is 69.

Finally, we study the decrease of the model’s performance

under adversarial attack. We plot the CDFs of the regression

model MSE with and without the attack in Figure 6. The

maximum MSE for the legitimate model is 0.002, while for

the adversarial model the maximum MSE reaches 0.014. We

show an example of a legitimate image that is transformed

into an adversarial image in Figure 7. The original steering

angle is −4.25 degrees, while the adversarial angle results in

a value of −2.25 degrees, a difference of 47.5%.

V. CONCLUSION

The existence of adversarial examples limits the areas in

which deep learning can be safely applied. We showed that

evasion attacks against neural networks are a real threat

for steering angle prediction in autonomous vehicles. With

small perturbation to the input images we created adversarial

examples that are either mis-classified by the model (in the

classification task) or increase the MSE of legitimate images

(in the regression task). Defending against these attacks is a

challenging open problem.
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