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MultiLayer Perceptron

@ All types of Neural Networks defined so far, are somewhat linear in
their architecture, which means there is no branching in the
computations

(lower is better)
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MultiLayer Perceptron

@ All types of Neural Networks defined so far, are somewhat linear in
their architecture, which means there is no branching in the
computations

(lower is better)

@ Thus, to compute the backward propagation we defined an
" Operation” class as the atomic unit of that makup our network

@ Then, to compute the backward gradient we have to iterate (for loop)
over the "operations” in the reverse direction
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The key limitation- handling branching

@ The previous approach can not handle branching as in the example
below
o Recurrent Neural Networks have many branches
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@ A is a matrix multiplication
@ « is matrix addition
@ M is element wise multiplication

ECEN 478 March 1, 2023

4/14



Introduction

The key limitation- handling branching
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@ As you can see B, is affecting two operations (branching)

@ Thus B2 should recieve two gradients from each branch (dBy,, dBy,)
) ng = dBQl + dBQl
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Automatic Diffrentiation

Automatic Diffrentiation

@ Automatic differentiation allows us to compute these gradients via
smart route.
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Automatic Diffrentiation

@ Automatic differentiation allows us to compute these gradients via
smart route.

@ Rather than the "operations” being the atomic units that make up
the network, we define a class that wraps around the data itself and
allows the data to keep track of the operations performed on it,

@ So that the data can continually accumulate gradients as it is
involved in different operations

@ What we will build is a small scale version of what is happening in
Pytorch and Tensorflow
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Automatic Diffrentiation

Derivative Example

Suppose we have the following equation
e=(4a+3) x (a+2)=4a®+11la+ 6

What is%at a=3
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Automatic Diffrentiation

Derivative Example

Suppose we have the following equation
e=(4a+3) x (a+2)=4a®+11la+ 6

What is%at a=3

oe
— =28 11
Oa £

OR

def forward(num: int):
b= num * 4
c=b+3
return ¢ * (num + 2)
print(round(forward(3.01) - forward(2.99)) / 0.02), 3)

35.0
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Automatic Diffrentiation

Derivative Example

a = NumberWithGrad(3)
b=a*4
c=b+3 4 _,@ b
d=(a+ 2) A
e=c*d a
e.backward() 3

A\ 4
print(a.grad) 2 S\
35
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Ultimate Goal

@ The goal with automatic differentiation is to make the data objects
themselves—numbers the fundamental units of analysis.

o We will create a class that wraps around the actual data being
computed (int or float).

@ Common operations such as adding, multiplying, and matrix
multiplication are redefined so that the computiational graph is
constructed on the fly.

@ The wrapper class contain information on how to compute gradients,
given what happens on the forward pass.
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Code

Numberable = Union[float, int]

def ensure_number(num: Numberable) -> NumberWithGrad:
if isinstance(num, NumberWithGrad):

return num

else:

return NumberWithGrad(num)

class NumberWithGrad(object):

def

def

def

__init__(self,
num: Numberable,
depends_on: List[Numberable] = None,
creation_op: str = '"):
self.num = num
self.grad = None
self.depends_on = depends_on or []
self.creation_op = creation_op

__add__(self,
other: Numberable) -> NumberWithGrad:
return NumberWithGrad(self.num + ensure_number(other).num,
depends_on = [self, ensure_number(other)],
creation_op = 'add')

__mul__(self,
other: Numberable = None) -> NumberWithGrad:

return NumberWithGrad(self.num * ensure_number(other).num,
depends_on = [self, ensure_number(other)],
creation_op = 'mul')
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Code Continue

def backward(self, backward_grad: Numberable = None) -> None:
if backward_grad is None: # first time calling backward
self.grad = 1
else:
# These lines allow gradients to accumulate.

# If the gradient doesn't exist yet, simply set it equal
# to backward_grad
if self.grad is None:
self.grad = backward_grad
# Otherwise, simply add backward_grad to the existing gradient
else:
self.grad += backward_grad

if self.creation_op == "add":
# Simply send backward self.grad, since increasing either of these
# elements will increase the output by that same amount
self.depends_on[0].backward(self.grad)
self.depends_on[1].backward(self.grad)

if self.creation_op == "mul":

# Calculate the derivative with respect to the first element
new = self.depends_on[1] * self.grad

# Send backward the derivative with respect to that element
self.depends_on[0].backward(new.num)

# Calculate the derivative with respect to the second element
new = self.depends_on[0] * self.grad

# Send backward the derivative with respect to that element
self.depends_on[1].backward(new.num)
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Questions ?
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