Introduction to Neural Networks J

ECEN 478

Dr. Mahmoud Nabil Mahmoud
mnmahmoud@ncat.edu

North Carolina A & T State University

March 1, 2023

ECEN 478 March 1, 2023 1/14

Outline

@ Introduction

ECEN 478 March 1, 2023 2/14

MultiLayer Perceptron

@ All types of Neural Networks defined so far, are somewhat linear in
their architecture, which means there is no branching in the
computations

(lower is better)

ECEN 478 March 1, 2023 3/14

MultiLayer Perceptron

@ All types of Neural Networks defined so far, are somewhat linear in
their architecture, which means there is no branching in the
computations

(lower is better)

@ Thus, to compute the backward propagation we defined an
" Operation” class as the atomic unit of that makup our network

ECEN 478 March 1, 2023

3/14

MultiLayer Perceptron

@ All types of Neural Networks defined so far, are somewhat linear in
their architecture, which means there is no branching in the
computations

(lower is better)

@ Thus, to compute the backward propagation we defined an
" Operation” class as the atomic unit of that makup our network

@ Then, to compute the backward gradient we have to iterate (for loop)
over the "operations” in the reverse direction

ECEN 478 March 1, 2023 3/14

The key limitation- handling branching

@ The previous approach can not handle branching as in the example
below
o Recurrent Neural Networks have many branches

B
A]—FAl
W, — |
Cl
o —»M—>L
A
A, —>mm B, BZT
W, —»!

2

@ A is a matrix multiplication
@ « is matrix addition
@ M is element wise multiplication

ECEN 478 March 1, 2023

4/14

Introduction

The key limitation- handling branching

A]—PABI
W, — |
C]
aF— > M—»L
Y|
w »

@ As you can see B, is affecting two operations (branching)

@ Thus B2 should recieve two gradients from each branch (dBy,, dBy,)
) ng = dBQl + dBQl

March 1, 2023 5/14

ECEN 478

Outline

© Automatic Diffrentiation

ECEN 478 March 1, 2023 6/14

Automatic Diffrentiation

Automatic Diffrentiation

@ Automatic differentiation allows us to compute these gradients via
smart route.

ECEN 478 March 1, 2023 7/14

Automatic Diffrentiation

Automatic Diffrentiation

@ Automatic differentiation allows us to compute these gradients via
smart route.

@ Rather than the "operations” being the atomic units that make up
the network, we define a class that wraps around the data itself and
allows the data to keep track of the operations performed on it,

ECEN 478 March 1, 2023

7/14

Automatic Diffrentiation

@ Automatic differentiation allows us to compute these gradients via
smart route.

@ Rather than the "operations” being the atomic units that make up
the network, we define a class that wraps around the data itself and
allows the data to keep track of the operations performed on it,

@ So that the data can continually accumulate gradients as it is
involved in different operations

ECEN 478 March 1, 2023 7/14

Automatic Diffrentiation

@ Automatic differentiation allows us to compute these gradients via
smart route.

@ Rather than the "operations” being the atomic units that make up
the network, we define a class that wraps around the data itself and
allows the data to keep track of the operations performed on it,

@ So that the data can continually accumulate gradients as it is
involved in different operations

@ What we will build is a small scale version of what is happening in
Pytorch and Tensorflow

ECEN 478 March 1, 2023 7/14

Automatic Diffrentiation

Derivative Example

Suppose we have the following equation
e=(4a+3) x (a+2)=4a®+11la+ 6

What is%at a=3

ECEN 478 March 1, 2023 8/14

Automatic Diffrentiation

Derivative Example

Suppose we have the following equation
e=(4a+3) x (a+2)=4a®+11la+ 6

What is%at a=3

oe
— =28 11
Oa £

ECEN 478 March 1, 2023 8/14

Automatic Diffrentiation

Derivative Example

Suppose we have the following equation
e=(4a+3) x (a+2)=4a®+11la+ 6

What is%at a=3

oe
— =28 11
Oa £

OR

def forward(num: int):
b= num * 4
c=b+3
return ¢ * (num + 2)
print(round(forward(3.01) - forward(2.99)) / 0.02), 3)

35.0

ECEN 478 March 1, 2023 8/14

Automatic Diffrentiation

Derivative Example

a = NumberWithGrad(3)
b=a*4
c=b+3 4 _,@ b
d=(a+ 2) A
e=c*d a
e.backward() 3

A\ 4
print(a.grad) 2 S\
35

ECEN 478 March 1, 2023 9/14

Ultimate Goal

@ The goal with automatic differentiation is to make the data objects
themselves—numbers the fundamental units of analysis.

o We will create a class that wraps around the actual data being
computed (int or float).

@ Common operations such as adding, multiplying, and matrix
multiplication are redefined so that the computiational graph is
constructed on the fly.

@ The wrapper class contain information on how to compute gradients,
given what happens on the forward pass.

ECEN 478 March 1, 2023 10/ 14

Outline

© Code

ECEN 478 March 1, 2023 11/14

Code

Numberable = Union[float, int]

def ensure_number(num: Numberable) -> NumberWithGrad:
if isinstance(num, NumberWithGrad):

return num

else:

return NumberWithGrad(num)

class NumberWithGrad(object):

def

def

def

__init__(self,
num: Numberable,
depends_on: List[Numberable] = None,
creation_op: str = '"):
self.num = num
self.grad = None
self.depends_on = depends_on or []
self.creation_op = creation_op

__add__(self,
other: Numberable) -> NumberWithGrad:
return NumberWithGrad(self.num + ensure_number(other).num,
depends_on = [self, ensure_number(other)],
creation_op = 'add')

__mul__(self,
other: Numberable = None) -> NumberWithGrad:

return NumberWithGrad(self.num * ensure_number(other).num,
depends_on = [self, ensure_number(other)],
creation_op = 'mul')

ECEN 4 March 1, 2023

12/14

Code Continue

def backward(self, backward_grad: Numberable = None) -> None:
if backward_grad is None: # first time calling backward
self.grad = 1
else:
These lines allow gradients to accumulate.

If the gradient doesn't exist yet, simply set it equal
to backward_grad
if self.grad is None:
self.grad = backward_grad
Otherwise, simply add backward_grad to the existing gradient
else:
self.grad += backward_grad

if self.creation_op == "add":
Simply send backward self.grad, since increasing either of these
elements will increase the output by that same amount
self.depends_on[0].backward(self.grad)
self.depends_on[1].backward(self.grad)

if self.creation_op == "mul":

Calculate the derivative with respect to the first element
new = self.depends_on[1] * self.grad

Send backward the derivative with respect to that element
self.depends_on[0].backward(new.num)

Calculate the derivative with respect to the second element
new = self.depends_on[0] * self.grad

Send backward the derivative with respect to that element
self.depends_on[1].backward(new.num)

ECEN 478 March 1, 2023 13 /14

Questions ?

ECEN 478 March 1, 2023 14 /14

	Introduction
	Automatic Diffrentiation
	Code

