Introduction to Neural Networks

ECEN 478

Dr. Mahmoud Nabil Mahmoud mnmahmoud@ncat.edu

North Carolina A & T State University

March 1, 2023

< □ > < 同 > < 回 > < 回 > < 回 >

Outline

2 Automatic Diffrentiation

ECEN 478

< □ > < □ > < □ > < □ > < □ >

MultiLayer Perceptron

 All types of Neural Networks defined so far, are somewhat linear in their architecture, which means there is no branching in the computations

→ ∢ ∃

MultiLayer Perceptron

 All types of Neural Networks defined so far, are somewhat linear in their architecture, which means there is no branching in the computations

• Thus, to compute the backward propagation we defined an "Operation" class as the atomic unit of that makup our network

MultiLayer Perceptron

 All types of Neural Networks defined so far, are somewhat linear in their architecture, which means there is no branching in the computations

- Thus, to compute the backward propagation we defined an "Operation" class as the atomic unit of that makup our network
- Then, to compute the backward gradient we have to iterate (for loop) over the "operations" in the reverse direction

The key limitation- handling branching

- The previous approach can not handle branching as in the example below
- Recurrent Neural Networks have many branches

- Λ is a matrix multiplication
- α is matrix addition
- M is element wise multiplication

The key limitation- handling branching

• As you can see B_2 is affecting two operations (branching)

- Thus B2 should recieve two gradients from each branch (dB_{2_1}, dB_{2_1})
- $dB_2 = dB_{2_1} + dB_{2_1}$

► < ∃ ►</p>

Outline

2 Automatic Diffrentiation

< □ > < □ > < □ > < □ > < □ >

 Automatic differentiation allows us to compute these gradients via smart route.

イロト イポト イヨト イヨト

- Automatic differentiation allows us to compute these gradients via smart route.
- Rather than the "operations" being the atomic units that make up the network, we define a class that wraps around the data itself and allows the data to keep track of the operations performed on it,

- Automatic differentiation allows us to compute these gradients via smart route.
- Rather than the "operations" being the atomic units that make up the network, we define a class that wraps around the data itself and allows the data to keep track of the operations performed on it,
- So that the data can continually accumulate gradients as it is involved in different operations

- Automatic differentiation allows us to compute these gradients via smart route.
- Rather than the "operations" being the atomic units that make up the network, we define a class that wraps around the data itself and allows the data to keep track of the operations performed on it,
- So that the data can continually accumulate gradients as it is involved in different operations
- What we will build is a small scale version of what is happening in Pytorch and Tensorflow

Suppose we have the following equation

$${
m e} = (4a+3) imes (a+2) = 4a^2 + 11a + 6$$

What is $\frac{\partial e}{\partial a}$ at a = 3

・ 何 ト ・ ヨ ト ・ ヨ ト

Suppose we have the following equation

$${
m e} = (4a+3) imes (a+2) = 4a^2 + 11a + 6$$

What is $\frac{\partial e}{\partial a}$ at a = 3

$$rac{\partial \mathbf{e}}{\partial a} = 8a + 11$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Suppose we have the following equation

$${f e}=(4a+3) imes(a+2)=4a^2+11a+6$$

What is $\frac{\partial e}{\partial a}$ at a = 3

$$rac{\partial \mathbf{e}}{\partial a} = 8a + 11$$

OR

def forward(num: int): b = num * 4 c = b + 3 return c * (num + 2) print(round(forward(3.01) - forward(2.99)) / 0.02), 3)

(日) (四) (日) (日) (日)

э

8/14

March 1, 2023

35.0

ECEN 478

a = NumberWithGrad(3)

b = a * 4 c = b + 3 d = (a + 2) e = c * d e.backward()

print(a.grad)

(日) (四) (日) (日) (日)

35

Ultimate Goal

- The goal with automatic differentiation is to make the data objects themselves—numbers the fundamental units of analysis.
- We will create a class that wraps around the actual data being computed (int or float).
- Common operations such as adding, multiplying, and matrix multiplication are redefined so that the computiational graph is constructed on the fly.
- The wrapper class contain information on how to compute gradients, given what happens on the forward pass.

(日)

Outline

2 Automatic Diffrentiation

< □ > < □ > < □ > < □ > < □ >

Code

Code

```
Numberable = Union[float, int]
def ensure number(num: Numberable) -> NumberWithGrad:
   if isinstance(num, NumberWithGrad):
       return num
   else:
       return NumberWithGrad(num)
class NumberWithGrad(object):
   def init (self.
                num: Numberable.
                depends on: List[Numberable] = None.
                creation op: str = ''):
       self.num = num
       self.grad = None
       self.depends on = depends on or []
       self.creation op = creation op
   def add (self.
               other: Numberable) -> NumberWithGrad:
       return NumberWithGrad(self.num + ensure_number(other).num,
                             depends_on = [self, ensure_number(other)],
                             creation op = 'add')
   def __mul__(self,
               other: Numberable = None) -> NumberWithGrad:
       return NumberWithGrad(self.num * ensure_number(other).num,
                             depends_on = [self, ensure_number(other)],
                             creation op = 'mul')
                                                                           NAEN E VAR
```

ECEN 478

Code

Code Continue

```
def backward(self, backward_grad: Numberable = None) -> None:
    if backward grad is None: # first time calling backward
        self.qrad = 1
    else:
        # These lines allow gradients to accumulate.
     # If the gradient doesn't exist vet. simply set it equal
     # to backward_grad
     if self.grad is None:
         self.grad = backward grad
     # Otherwise, simply add backward grad to the existing gradient
     elset
         self.grad += backward grad
 if self.creation op == "add":
     # Simply send backward self.grad, since increasing either of these
      # elements will increase the output by that same amount
     self.depends on[0].backward(self.grad)
     self.depends on[1].backward(self.grad)
 if self.creation_op == "mul":
     # Calculate the derivative with respect to the first element
     new = self.depends on[1] * self.grad
      # Send backward the derivative with respect to that element
     self.depends_on[0].backward(new.num)
     # Calculate the derivative with respect to the second element
     new = self.depends on[0] * self.grad
     # Send backward the derivative with respect to that element
     self.depends on[1].backward(new.num)
```

E ▶ ◀ E ▶ E ∽ Q ⊂ March 1, 2023 13 / 14

<ロト < 四ト < 三ト < 三ト

