Neural Networks Foundations

Dr. Mahmoud N Mahmoud mnmahmoud@ncat.edu
North Carolina A \& T State University

November 15, 2022

Outline

(1) Linear Regression

(2) Linear Regression: The Code

Linear Regression

Linear Regression

Linear regression attempts to model the relationship between two variables by fitting a linear equation to observed data

$$
y_{i}=\stackrel{\downarrow}{\beta_{0}}+\stackrel{\downarrow}{\beta_{1} \times x_{1}}+\ldots+\stackrel{\downarrow}{\beta_{n}} \times \underline{x_{k}}+\epsilon
$$

- β_{0} term to adjust the "baseline" value of the prediction.
- ϵ because in the error in the prediction.

Linear Regression: A Diagram

- Λ is a comparsion operator between the true output and the predicted output.
- L is the called loss.

Training Linear Regression
${ }^{2}$

- let's handle the simpler scenario in which we don't have anjintercept term
- We have observation vector $\underset{\times i=\left[x_{i \underline{1}}^{r}, x_{i \underline{2}}, x_{i \underline{3}} \ldots x_{i k}\right]}{ }$
- Another vector of parameters that weill call

$$
{ }_{\lambda} W=\left[w_{1}, w_{2}, w_{w 3} \ldots w_{k}\right]^{T}
$$

- Our prediction would then simply be

$$
\begin{aligned}
P_{i} & =x_{i} \times W=w_{1} \times x_{i 1}+w_{2} \times x_{i 2}+\ldots+w_{k} \times x_{i k} \\
& \mid \times \underline{k} \times \mathbf{~ s c d o r}
\end{aligned}
$$

Batch Prediction

$$
\begin{aligned}
& \text { somple fron tralutis }
\end{aligned}
$$

- Generating predictions for a batch of observations in a linear regression can be done with a matrix multiplication

"Training" this model

(1) At a high level, models take in batch of data, combine them with parameters in some way, and produce predictions.

$$
\left.\left(p_{\text {batch }}=\begin{array}{l}
p_{1} \\
p_{2} \\
p_{3}
\end{array}\right\rceil\right)
$$

(2) Compute model penalty
(3) Compute the gradient of the error with respect to each element of W
(4) Update W to reduce the error

Diagram and Math

Calculating the Gradients: A Diagram

- We will get the gradient of L with respect to the weight and the bias.

Calculating the Gradients: Math

Gradient with respect to the weight

$$
\frac{\partial \Lambda}{\partial P}(P, Y) \times \frac{\partial \alpha}{\partial N}(N, B) \times \frac{\partial \nu}{\partial W}(X, W)
$$

Calculating the Gradients: Math

Gradient with respect to the weight

$$
\frac{\partial \Lambda}{\partial P}(P, Y) \times \frac{\partial \alpha}{\partial N}(N, B) \times \frac{\partial \nu}{\partial W}(X, W)
$$

- $\frac{\partial \Lambda}{\partial P}(P, Y)=-1 \times(2 \times(Y-P))$

Calculating the Gradients: Math

Gradient with respect to the weight

$$
\frac{\partial \Lambda}{\partial P}(P, Y) \times \frac{\partial \alpha}{\partial N}(N, B) \times \frac{\partial \nu}{\partial W}(X, W)
$$

- $\frac{\partial \Lambda}{\partial P}(P, Y)=-1 \times(2 \times(Y-P))$
- $\frac{\partial \alpha}{\partial N}=$ vector of ones

Calculating the Gradients: Math

Gradient with respect to the weight

$$
\frac{\partial \Lambda}{\partial P}(P, Y) \times \frac{\partial \alpha}{\partial N}(N, B) \times \frac{\partial \nu}{\partial W}(X, W)
$$

- $\frac{\partial \Lambda}{\partial P}(P, Y)=-1 \times(2 \times(Y-P))$
- $\frac{\partial \alpha}{\partial N}=$ vector of ones
- $\frac{\partial \gamma}{\partial W}=X^{T}$

Calculating the Gradients: Math

Gradient with respect to the weight

$$
\frac{\partial \Lambda}{\partial P}(P, Y) \times \frac{\partial \alpha}{\partial N}(N, B) \times \frac{\partial \nu}{\partial W}(X, W)
$$

- $\frac{\partial \Lambda}{\partial P}(P, Y)=-1 \times(2 \times(Y-P))$
- $\frac{\partial \alpha}{\partial N}=$ vector of ones
- $\frac{\partial \gamma}{\partial W}=X^{T}$

Calculating the Gradients: Math

Gradient with respect to the weight

$$
\frac{\partial \Lambda}{\partial P}(P, Y) \times \frac{\partial \alpha}{\partial N}(N, B) \times \frac{\partial \nu}{\partial W}(X, W)
$$

- $\frac{\partial \Lambda}{\partial P}(P, Y)=-1 \times(2 \times(Y-P))$
- $\frac{\partial \alpha}{\partial N}=$ vector of ones
- $\frac{\partial \gamma}{\partial W}=X^{T}$

Calculate $\frac{d L}{d B}$?

Outline

(1) Linear Regression

(2) Linear Regression: The Code

Linear Regression: Forward Pass

def forward_linear_regression(X_batch: ndarray, y_batch: ndarray, weights: Dict[str, ndarray])
-> Tuple[float, Dict[str, ndarray]]:

Linear Regression: Backward Pass

```
def loss_gradients(forward_info: Dict[str, ndarray],
            weights: Dict[str, ndarray]) -> Dict[str, ndarray]:
    '''
    Compute dLdW and dLdB for the step-by-step linear regression model.
    '',
    batch_size = forward_info['X'].shape[0]
    dLdP = -2 * (forward_info['y'] - forward_info['P'])
    dPdN = np.ones_like(forward_info['N'])
    dPdB = np.ones_like(weights['B'])
```



```
    dNdW = np.transpose(forward_info['X'], (1, 0))
    # need to use matrix multiplication here,
    ## with dvclun_unelaft (see note at the end of last chapter)
dLdW = np.dot(dNdW, dLdN)
    # need to sum along dimension representing the batch size
    #(see note near the end of this chapter)
    dLdB = (dLdP * dPdB).sun(axis=0)
    loss_gradients: Dict[str, ndarray] = {}
    loss gradients['W'] = dLdW
    loss_gradients['B'] = dLdB
    return loss_gradients
```


Using These Gradients to Train the Model

Now we'll simply run the following procedure over and over again:
(1) Select a batch of data.

Using These Gradients to Train the Model

Now we'll simply run the following procedure over and over again:
(1) Select a batch of data.
(2) Run the forward pass of the model.

Using These Gradients to Train the Model

Now we'll simply run the following procedure over and over again:
(1) Select a batch of data.
(2) Run the forward pass of the model.
(3) Run the backward pass of the model using the info computed on the forward pass.

Using These Gradients to Train the Model

Now we'll simply run the following procedure over and over again:
(1) Select a batch of data.
(2) Run the forward pass of the model.
(3) Run the backward pass of the model using the info computed on the forward pass.
(3) Use the gradients computed on the backward pass to update the weights.

$$
w_{i}=w_{i}-\text { learning rate } * \frac{d L}{d w_{i}}
$$

Outline

(2) Linear Regression: The Code

(3) Neural Network

Introduction

- As we saw that linear regression is only able to learn linear input/output relationship.
- How can we extend this chain of reasoning to design a more complex model that can learn nonlinear relationships?

Introduction

- As we saw that linear regression is only able to learn linear input/output relationship.
- How can we extend this chain of reasoning to design a more complex model that can learn nonlinear relationships?
- The central idea is that we'll first do many linear regressions, then feed the results through a nonlinear function, and finally do one last linear regression that ultimately makes the predictions.

Step 1: A Bunch of Linear Regressions

- if our data X had dimensions [batch_size, num_features],

Step 1: A Bunch of Linear Regressions

- if our data X had dimensions [batch_size, num_features],
- this output is, for each observation in the batch, simply a weighted sum of the original features.

Step 1: A Bunch of Linear Regressions

batch a nom fate

- if our data X had dimensions [batch_size, num_features],
- this output is, for each observation in the batch, simply a weighted sum of the original features.
- To do multiple linear regressions at once, multiply our input by a weight matrix with dimensions [num_features, num_outputs], resulting in an output of dimensions [batch_size, num_outputs]

batch * Nun lowtpit 3 line-

Step 1: A Bunch of Linear Regressions

- if our data X had dimensions [batch_size, num_features],
- this output is, for each observation in the batch, simply a weighted sum of the original features.
- To do multiple linear regressions at once, multiply our input by a weight matrix with dimensions [num_features, num_outputs], resulting in an output of dimensions [batch_size, num_outputs]
- Now, for each observation, we have num_outputs different weighted sums of the original features.

A Nonlinear Function

- We will feed each of these weighted sums through a nonlinear sigmoid function
- Why sigmoid? Why not square?
- Preservation of information.
- The function is nonlinear.
- Has the nice property that its derivative can be expressed in terms of the function itself:

$$
\frac{\partial \sigma}{\partial u}(x)=\sigma(x) \times(1-\sigma(x))
$$

Step 3: Another Linear Regression

- The output from each linear regression is weighted and fed again to another linear regression.
- The cascading of linear regressions enable learning complex input/output relations.

Simplified Diagram

Computational graph for a simple neural network.

$$
L=(Y-P)^{2}
$$

Another Diagram (Most Popular)

Neural Networks: The Backward Pass


```
Derivative Code
\partialA}(P,y)\quad\mathrm{ dLdP = - (forward_info[y] - forward_info[P])
\frac{\partial\alpha}{\partialM}}(\mp@subsup{M}{2}{},\mp@subsup{B}{2}{})\mathrm{ np.ones_like(forward_info[M2])
\frac{\partiala}{\partial\mp@subsup{B}{2}{}}(\mp@subsup{M}{2}{},\mp@subsup{B}{2}{}) np.ones_like(weights[B2])
\frac{\partial\nu}{\partialW2}}(\mp@subsup{O}{1}{},\mp@subsup{W}{2}{})\mathrm{ dM2dW2 = np.transpose(forward_info[01],(1, ө))
\frac{\partial\nu}{\partialO}(\mp@subsup{O}{1}{},\mp@subsup{W}{2}{})\quad\mathrm{ dM2d01 = np.transpose(weights[W2], (1, 0))}
\frac{\partial\sigma}{\partialu}(\mp@subsup{N}{1}{})\quad\mathrm{ dO1dN1 = sigmoid(forward_info[N1] }\times(1-\operatorname{sigmoid(forward_info[N1])}
\partial\alpha
\frac{\partiala}{\partial\mp@subsup{B}{1}{\prime}}(\mp@subsup{M}{1}{},\mp@subsup{B}{1}{})\quad\mathrm{ dN1dB1 = np.ones_like(weights[B1])}
\partial\nu
```


Forward Pass: Code

```
def forward_loss(X: ndarray,
            y: ndarray,
            weights: Dict[str, ndarray]
            ) -> Tuple[Dict[str, ndarray], float]:
Compute the forward pass and the loss for the step-by-step
neural network model.
M1 = np.dot(X, weights['W1'])
N1 = M1 + weights['B1']
01 = signoid(N1)
M2 = np.dot(01, weights['W2'])
P = M2 + weights['B2']
loss = np.mean(np.power(y - P, 2))
forward_info: Dict[str, ndarray] = {}
forward_info['X'] = X
forward_info['M1'] = M1
forward_info['N1'] = N1
forward_info['01'] = 01
forward_info['M2'] = M2
forward_info['P'] = P
forward_info['y'] = y
return forward_info, loss
```


Forward Pass: Backward Pass

```
def loss_gradients(forward_info: Dict[str, ndarray],
            weights: Dict[str, ndarray]) -> Dict[str, ndarray]:
    Compute the partial derivatives of the loss with respect to each of the parameters in the neural network.
    '''
    dLdP = -(forward_info['y'] - forward_info['P'])
    dPdM2 = np.ones_like(forward_info['M2'])
    dLdM2 = dLdP * dPdM2
    dPdB2 = np.ones_like(weights['B2'])
    dLdB2 = (dLdP * dPdB2).sum(axis=0)
    dM2dW2 = np.transpose(forward_info['01'], (1, 0))
    dLdW2 = np.dot(dM2dW2, dLdP)
    dM2d01 = np.transpose(weights['W2'], (1, 0))
    dLd01 = np.dot(dLdM2, dM2d01)
    d01dN1 = sigmoid(forward_info['N1']) * (1- sigmoid(forward_info['N1']))
    dLdN1 = dLd01 * d01dN1
    dN1dB1 = np.ones_like(weights['B1'])
    dN1dM1 = np.ones_like(forward_info['M1'])
    dLdB1 = (dLdN1 * dN1dB1).sum(axis=0)
    dLdM1 = dLdN1 * dN1dM1
    dM1dW1 = np.transpose(forward_info['X'], (1, 0))
    dLdW1 = np.dot(dM1dW1, dLdM1)
    loss_gradients: Dict[str, ndarray] = {}
    loss_gradients['W2'] = dLdW2
    loss_gradients['B2'] = dLdB2.sum(axis=0)
    loss_gradients['W1'] = dLdW1
    loss_gradients['B1'] = dLdB1.sum(axis=0)
    return loss_gradients
```


Questions R

