Introduction to Artificial Neural Networks 1

Dr. Mahmoud Nabil
mnmahmoud@ncat.edu

North Carolina A & T State University

November 2, 2022

B — A

1/70

Outline

© Background

B — TR

Background

Introduction

@ One of the oldest and one of the newest machine learning models.

B — A By

Background

Introduction

@ One of the oldest and one of the newest machine learning models.

@ Goes back to 1940, when people started to build modles the imitate
the human brain.

B — A By

Introduction

@ One of the oldest and one of the newest machine learning models.

@ Goes back to 1940, when people started to build modles the imitate
the human brain.

o Logistic regression (perceptron) is the core of neural networks started
in 1950.

B — A By

Background

Introduction

@ One of the oldest and one of the newest machine learning models.

@ Goes back to 1940, when people started to build modles the imitate
the human brain.

o Logistic regression (perceptron) is the core of neural networks started
in 1950.

@ However, scientists in that time showed that a single perceptron can
not solve xor problem (died).

B — A By

Background

Introduction

@ One of the oldest and one of the newest machine learning models.

@ Goes back to 1940, when people started to build modles the imitate
the human brain.

o Logistic regression (perceptron) is the core of neural networks started
in 1950.

@ However, scientists in that time showed that a single perceptron can
not solve xor problem (died).

@ Reborn in 1980, discovery of merging perceptrons together. But died
due to the resources requirements

B — A By

Background

Introduction

@ One of the oldest and one of the newest machine learning models.

@ Goes back to 1940, when people started to build modles the imitate
the human brain.

o Logistic regression (perceptron) is the core of neural networks started
in 1950.

@ However, scientists in that time showed that a single perceptron can
not solve xor problem (died).

@ Reborn in 1980, discovery of merging perceptrons together. But died
due to the resources requirements

@ Reborn in the last decade with the advancement of the computation
resouces.

B — A By

Background

Neurons and the brain

axon

neuron cell body

nucleus
uxon dendrites of

tips ~ mext neuron

electrical
signal

irites

need features

humans don’t y, = o(b./ + EW”

November 2, 2022

4/70

Types of Layers

@ The input layer
e Introduces input values into the network.
o No activation function or other processing.

@ The hidden layer(s)

e Perform classification of features U)y FOH D) S0 2)
o Two hidden layers are sufficient to solve any ~ # ** A
problem

© The output layer

e Functionally just like the hidden layers
e Outputs are passed on to the world outside the
neural network.

B — A

5/70

Background

Solving XOR with a Neural Network

Linear classifiers
cannot solve this b=-10 o (20x, + 20x, — 10)

b=30 o (-20x, — 20x, + 30)

0(20*0 +20*0-10)=0 0 (-20*0-20*0+30)=1 o (20*0 +20*1-30)=0
0(20*1 +20*1-10)=1 0 (-20*1-20*1+30)=0 o (20*1+20*0—30)=0
0(20%0 +20*1-10)~1 ©(-20*0-20*1+30)=1 o0 (20*1+20*1-30)=1
0(20*1 +20*0-10)=1 0 (-20*1-20*0+30)=1 0 (20*1+20*1-30)=1

B — November 2,202 6/70

Deep Learning Definition

A deep learning model is a computational graph that try to map inputs,
each drawn from some dataset with common characteristics to outputs
drawn from a related distribution.

B — A

Outline

© Mathematical Foundation

B — A G

Mathematical Foundation

Introduction

@ The aim of this part is to explain some foundational mental models
that are essential for understanding how neural networks work.

B — TR

Mathematical Foundation

Introduction

@ The aim of this part is to explain some foundational mental models
that are essential for understanding how neural networks work.

@ We will use basic building blocks to build neural networks.

B — TR

Mathematical Foundation

Introduction

@ The aim of this part is to explain some foundational mental models
that are essential for understanding how neural networks work.

@ We will use basic building blocks to build neural networks.
@ These blocks are

B — TR

Mathematical Foundation

Introduction

@ The aim of this part is to explain some foundational mental models
that are essential for understanding how neural networks work.

@ We will use basic building blocks to build neural networks.

@ These blocks are
o Functions

B — TR

Mathematical Foundation

Introduction

@ The aim of this part is to explain some foundational mental models
that are essential for understanding how neural networks work.

@ We will use basic building blocks to build neural networks.

@ These blocks are

e Functions
o Derivatives

B — TR

Mathematical Foundation

Introduction

@ The aim of this part is to explain some foundational mental models
that are essential for understanding how neural networks work.
@ We will use basic building blocks to build neural networks.

@ These blocks are

o Functions
o Derivatives
e Matrix multiplications

B — TR

Mathematical Foundation

Introduction

@ The aim of this part is to explain some foundational mental models
that are essential for understanding how neural networks work.
@ We will use basic building blocks to build neural networks.
@ These blocks are
e Functions
o Derivatives
e Matrix multiplications
o We'll systematically describe each concept we introduce from three
perspectives:

B — TR

Mathematical Foundation

Introduction

@ The aim of this part is to explain some foundational mental models
that are essential for understanding how neural networks work.

@ We will use basic building blocks to build neural networks.

@ These blocks are
e Functions
o Derivatives
e Matrix multiplications
o We'll systematically describe each concept we introduce from three
perspectives:
o Math

B — TR

Mathematical Foundation

Introduction

@ The aim of this part is to explain some foundational mental models
that are essential for understanding how neural networks work.

@ We will use basic building blocks to build neural networks.
@ These blocks are

o Functions
o Derivatives
e Matrix multiplications

o We'll systematically describe each concept we introduce from three
perspectives:

o Math
o Code

B — TR

Mathematical Foundation

Introduction

@ The aim of this part is to explain some foundational mental models
that are essential for understanding how neural networks work.

@ We will use basic building blocks to build neural networks.
@ These blocks are

o Functions
o Derivatives
e Matrix multiplications

o We'll systematically describe each concept we introduce from three
perspectives:

o Math
o Code
o A diagram

B — TR

Outline

© Functions

B — November 2,202 1070

Functions

Math.
o fi(x) = x>

e f(x) = max(x,0)

This notation says that the functions, which we arbitrarily call ; and f» ,
take in a number x as input and transform it into either x? (in the first
case) or max(x,0) (in the second case)

B — R TTTY T

Functions

Diagrams One way of depicting functions is to:
@ Draw an x-y plane.
@ Plot a bunch of point
© Connect these plotted points.

Square function “ReLU” function

output

o -Is -1o 65 00 05 10 15 20 -20 -15 -I0 -05 00 05 10 15 20
input i

This was first done by the French philosopher René Descartes.
] November 2, 2022 12/70

Functions

Functions

We can think of functions as boxes that take in numbers as input and

produce numbers as output

Definition: n ——

3 —

3 —

RelLU

— max(x, 0)

November 2, 2022

13/70

Code

def s¢

are(x: ndarray) -= ndarray:
Square each element in the input ndarray.

return np.power(x, 2)

def leaky_relu(x: ndarray) -> ndarray:

Apply "Leaky RelU" function to each element in ndarray.

return np.maximum(0.2 * x, x)

B — NE——

14/70

Outline

@ Derivatives

B — November 2, 2022 15 /70

Derivatives

Derivatives

The derivative of a function at a point is the “rate of change” of the output

of the function with respect to its input at that point
Math

fla+A) - fla—A4)
(a) _i—m 2x A

For very small value for A, such as 0.001

af F(a+0.001) — f(a — 0.001)
= 0.002

November 2, 2022 16 /70

Derivatives

Derivatives

Diagrams

f(a+0.001) - f(a- 0.001)
Slope = ————

f(a-0.001) (0.002)
f(a) /
f(a+0.001) \
a+0.001
d
a-0001

A small 4+-ve change in the input will lead to small -ve change in the output.

2 —{ Square | —» 4

B — TEa ey

Derivatives

Derivatives

Code

def dertv{func: Callable{[mdarray), ndarray),

irgut_: ndarray,

delta: Moat Y > ndarray:

retorn (func(input_ + delta) - func{irgut_

November 2, 2022

18/70

Outline

© Nested Functions
@ The Chain Rule

B — NI

Nested Functions

Nested Functions

functions can be “nested” to form “composite” functions

x—p{ f

B — TE e e

Nested Functions

Nested Functions

functions can be “nested” to form “composite” functions
Math

We should also include the less intuitive mathematical representation:

fa(fi(x)) =y

This is less intuitive because of the quirk that nested functions are read
“from the outside in”

B — Ty

Nested Functions

Nested Functions
Code

from typing import List

A Function takes in an ndarray as an argument and produces an ndarray
Array_Function = Callable[[ndarray], ndarray]

A Chain is a list of functions
Chain = List[Array_Function]

Then we'll define how data goes through a chain, first of length 2:
def chain_length_2(chain: Chain,
a: ndarray) -> ndarray:

rr

Evaluates two functions in a row, in a "Chain".

e

assert len(chain) == 2, \

"Length of input 'chain' should be 2"

f1 = chain[0]
f2 = chain[1]

return f2(f1(x))

B RIS

The Chain Rule
Outline

© Background

© Mathematical Foundation
© Functions

@ Derivatives

© Nested Functions
@ The Chain Rule

@ Functions with Multiple Inputs
@ Functions with Multiple Vector Inputs

© Computational Graph with Two 2D Matrix Inputs

B — T

The Chain Rule

The chain rule is a mathematical theorem that lets us compute derivatives
of composite functions.

Math

fj—ﬁ(-) df’(f.()) f‘
u

(x)

where u is simply a dummy variable representing the input to a function.

November 2, 2022 24 /70

The Chain Rule
The Chain Rule

Diagram

1small unit 3 small units 1small unit -2 small units

1small unit 6 small units

f f

by considering the diagram and the math, we can reason through what the
derivative of the output of a nested function with respect to its input

B — TEa e

The Chain Rule
Code

def chain_deriv_2(chain: Chain,
input_range: ndarray) -> ndarray:
Uses the chain rule to compute the derivative of two nested functions:
(f2(f1(x))"' = f2'(f1(x)) * f1'(x)

assert len(chain) == 2, \
"This function requires 'Chain' objects of length 2"

oA

assert input_range.ndim

"Function requires a 1 dimensional ndarray as input_range"

1 = chain[0]
f2 = chain[1]

df1/dx
f1_of_x = f1(input_range)

df1/du
dfidx = deriv(f1, input_range)

df2/du(f1(x))
df2du = deriv(f2, fi(input_range))

Multiplying these quantities together at each point
return dfidx * df2du

B November 2, 2022 26/70

Rl
Nesting Sigmoid and Square Function

Sigmoid Function: Very useful function in deep learning

10 sigmoid

def sigmoid(x: ndarray) -> ndarray:
Apply the sigmoid function to each element in the input ndarray.

return 1 / (1 + np.exp(-x))

B — T EaE Ty e

Rl
Nesting Sigmoid and Square Function

Function and derivative for Function and derivative for
fix) = sigmoid(square(x)) fix) = square(sigmoid(x))
10 — fix)
08
06
04
02
00
-02
— fix)
-04 2
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

When the functions are upward-sloping, the derivative is positive; when

they are flat, the derivative is zero; and when they are downward-sloping,

the derivative is negative.
] November 2, 2022 28 /70

Rl
Slightly Longer Example

Lets consider three mostly differentiable functions— f, , f» , and f3
Diagram

5 —>@—> f(x)—»@—» f(f,(x)) y
s o L (1] ;

\ \
N ’ /

Small change in the input cause a sequece of changes.

B — November 2, 2022 20 /70

Rl
Slightly Longer Example

Lets consider three mostly differentiable functions— f; , f» , and f3
Math

dfs, \ _ df: df df
@) = Z2(fa (A (@) x 52 (fi(@) x 7 (@)

3
u

Sequence of multiplications.

B — Ty e

Rl
Slightly Longer Example

Lets consider three mostly differentiable functions— f; , f» , and f3
Code

def chain_deriv_3(chain: Chain, # f2(f1(x))
input_range: ndarray) -> ndarray: f2_0f x = f2(f1_of x)

Uses the chain rule to compute the derivative of three nested functic
(f3(f2(f1)))" = f3'(f2(f1(x))) * f2'(f1(x)) * f1'(x)

df3du

df3du = deriv(f3, f2_of_x)
assert len(chain) == 3, \

df2du
"This function requires 'Chain' objects to have length 3" df2du = deriv(f2, fi_of_x)
1 = chain[0]
f2 = chatn[1] # df1dx
£3 = chain[2] dfidx = deriv(f1l, input_range)
F1(x)

Multiplying these quantities together at each point

f1_of_x = fi(input_range)
return dfidx * df2du * df3du

B — TEa ey el

Rl
Slightly Longer Example (Notes)

Something interesting took place here—to compute the chain rule for this
nested function, we made two “passes’ over it:
© First, we went “forward” through it, computing the quantities f1_of_x
and f2_of x along the way. We can call this (and think of it as) “the
forward pass.”

@ Then, we “went backward” through the function, using the quantities
that we computed on the forward pass to compute the quantities that
make up the derivative.

Finally, we multiplied three of these quantities together to get our derivative.

B — TEa ey e

Rl
Slightly Longer Example (Notes)

- sigmoid(square(leakyrelu(X)))
08 sigmoid(square(leakyrelu(X)))
06
0.4 4
02
00

T T

3 -2 1 0 1 2 3

comparing the plots of the derivatives to the slopes of the original functions,
we see that the chain rule is indeed computing the derivatives properly.

B — November 2, 2022 33/70

Outline

© Functions with Multiple Inputs

B — Ty

Functions with Multiple Inputs

Functions with Multiple Inputs

The functions we deal with in deep learning don't have just one input.
Instead, they have several inputs

Math
a=afz,y)=r+y

We can feed the output "a"” to another function

s =ala)

November 2, 2022 35/70

Functions with Multiple Inputs

Diagram

X =P
y a » 3 » O [P S

Here we see the two inputs going into o and coming out as a and then being
fed through o.

B — T Ea e

Functions with Multiple Inputs

Code
Coding this up is very straightforward;

def multiple_inputs_add(x: ndarray,
y: ndarray,
sigma: Array_Function) -> float:

P

Function with multiple inputs and addition, forward pass.

P

assert x.shape == y.shape

a=x+y
return sigma(a)

B — T Ea Ty e

Functions with Multiple Inputs

Derivatives of Functions with Multiple Inputs

Diagrams
compute the derivative of each constituent function “going backward” through

the computational graph and then multiply the results together to get the
total derivative.

da 00

‘ \l ')
a P a » O |—PS

X —P
y —>p

B — T EaE ey e

Derivatives of Functions with Multiple Inputs
Math
The chain rule applies to these functions in the same way it applied to

the functions in the prior sections. Since this is a nested function, with
f(x,y) =o(a(x,y)), we have:

Y 2 (a(w0) % 22 (@) = Lt y) x 2 ((a,)

And of course df/dy would be identical.
Now note that:

22 ((z,) =1

since for every unit increase in x, a increases by one unit, no matter the
value of x (the same holds for y).

B — TEE Ty e

Functions with Multiple Inputs

Derivatives of Functions with Multiple Inputs

Code

def multiple_inputs_add_backward(x: ndarray,
y: ndarray,
sigma: Array_Function) -> float:

Computes the derivative of this simple function with respect to
both inputs.

Compute "forward pass"
a=X+y

Compute derivatives
dsda = deriv(sigma, a)

dadx, dady = 1, 1

return dsda * dadx, dsda * dady

B — NE——

40/70

Outline

@ Functions with Multiple Vector Inputs

B — Ty

Functions with Multiple Vector Inputs

@ In deep learning, we deal with functions whose inputs are vectors or
matrices

@ We will compute the derivatives of complex functions involving dot
products and matrix multiplications will be essential.

B — e

Functions with Multiple Vector Inputs

Creating New Features from Existing Features

@ The single most common operation in neural networks is to form a
"weighted sum"” of the input, where the weighted sum could
emphasize certain features and deemphasize others

Math

I‘wl‘l

wy

W =

Lo,]

then we could define the output of this operation as:

N=ry(X,W)=X-W=x1 xw +Xx2X Wy +-+ Xy X Wp

B — eI

Functions with Multiple Vector Inputs

Creating New Features from Existing Features

Diagram

Blue = inputs N = outputs

[]
) ::@_' !
@ = Matrix multiplication

two inputs, both of which can be ndarrays, and one output.

November 2, 2022 44 /70

Functions with Multiple Vector Inputs

Creating New Features from Existing Features

Another detailed diagram

Red =intermediate
X, —> quantities

M —» M
W, —p I\
X, —
W, —p

X, —
W, —p 3

B — November 2, 2022 45 /70

Functions with Multiple Vector Inputs

Creating New Features from Existing Features

Code

def matnul_forward(X: ndarray,
N: ndarray) -> ndarray:

Computes the forward pass of a matrix multiplication.

assert X.shape[1] == W.shape[0], \

For matrix muitiplication, the number of columwms

the numbe

rows

array (s and the

"'.format(x.sh;pe[], W.shape[©])

& matrix multiplication

N = np.dot(X, W)

return N

B — NE——

46 /70

Functions with Multiple Vector Inputs

Derivatives of Functions with Multiple Vector Inputs

@ For vector functions, it isn't immediately obvious what the derivative
is.

@ Small change to any of the inputs can cause output change.

@ It is more natural to think of a derivative with respect to each input.

B — TRy

Functions with Multiple Vector Inputs

Derivatives of Functions with Multiple Vector Inputs

@ For vector functions, it isn't immediately obvious what the derivative
is.
@ Small change to any of the inputs can cause output change.
@ It is more natural to think of a derivative with respect to each input.
Diagram

Blue = inputs N = outputs
3y

A/_\OX
[x]
oy

oy
@ = Matrix multiplication

November 2, 2022 47 /70

Functions with Multiple Vector Inputs

Derivatives of Functions with Multiple Vector Inputs

Math
We get the derivative with respect to each element of the vector

3_7_[% oy 37]

X ~ [0x1’ Ox2? Oxs

B — eI

Functions with Multiple Vector Inputs

Derivatives of Functions with Multiple Vector Inputs

Math

We get the derivative with respect to each element of the vector

ﬁ_[av oy 37]

X ~ [0x1’ Ox2? Oxs

Remember v(X, W) =X - W =x3 x wg + x2 X Wp + -+ + Xp X Wp,

November 2, 2022 48 /70

Functions with Multiple Vector Inputs

Derivatives of Functions with Multiple Vector Inputs

Math
We get the derivative with respect to each element of the vector

X ~ [0x1’ Ox2? Oxs

ﬁ_[av [oat 37]
Remember v(X, W) =X - W =x3 x wg + x2 X Wp + -+ + Xp X Wp,

we can see that if, x; changes by A units, then output change by w; x A
units

2= [w,wo,ws] = WT

B — eI

Functions with Multiple Vector Inputs

Derivatives of Functions with Multiple Vector Inputs

Math
We get the derivative with respect to each element of the vector

Oy _ [0y 9y oy
oxX —

Ox1’ Ox2? Ox3
Remember v(X, W) =X - W =x3 x wg + x2 X Wp + -+ + Xp X Wp,

we can see that if, x; changes by A units, then output change by w; x A
units

And also,

B — eI

Functions with Multiple Vector Inputs

Derivatives of Functions with Multiple Vector Inputs

Code

def nmatnul_backward_first(X: ndarray,
W: ndarray)

of a matrix multiplication with respect to the

-> ndarray:

Computes the backward pass

first argument.

& backward pass

dNdX = np.transpose(W, (1, 8))

return dNdX

November 2, 2022

49 /70

Functions with Multiple Vector Inputs

Vector Functions and Their Derivatives: One Step Further

@ Deep learning models, of course, involve more than one operation

@ Therefore, we'll now look at computing the derivative of a composite
functions with vector inputs.

@ Suppose the following function

S= U(V(X’ W))

B — TEa ey

Functions with Multiple Vector Inputs

Vector Functions and Their Derivatives: One Step Further

Diagram

[x]

N—>| 5
[w]

—> 5

Same graph as before, but with another function tacked onto the end

November 2, 2022 51/70

Functions with Multiple Vector Inputs

Vector Functions and Their Derivatives: One Step Further

Diagram

[x]

N—>| 5
[w]

—> 5

Same graph as before, but with another function tacked onto the end

November 2, 2022 52/70

Functions with Multiple Vector Inputs

Vector Functions and Their Derivatives: One Step Further

Math
S=0(y(X,W))=0(x1 x w1 + X2 X Wa + -+ X X Wp)

Mathematically, this is straightforward as well

B — T EE ey ol

Functions with Multiple Vector Inputs

Vector Functions and Their Derivatives: One Step Further

Code

def matrix_forward_extra(X: ndarray,
W: ndarray,
sigma: Array_Function) -> ndarray:

Computes the forward pass of a function involving matrix multiplication,

one extra function.

assert X.shape[1] == W.shape[0]

matrix sultiplication

N = np.dot(X, W)

feeding the output of the matrix sultiplication through sigma

sigma(N)

wv

return §

B — TEa e S

Functions with Multiple Vector Inputs

Vector Functions and Their Derivatives: The Backward
Pass

Diagram

» N » O » S

B — NE——

55 /70

Functions with Multiple Vector Inputs

Vector Functions and Their Derivatives: The Backward
Pass

Math
95 = B (y(X, W) x T (X, W)

B — November 2, 2022 56/70

Functions with Multiple Vector Inputs

Vector Functions and Their Derivatives: The Backward
Pass

Math
o Oyo
% = 5. (X, W) x FZ(X, W)
The first part of this is simply

%(V(X,W)):%(xlx Wi+ X0 X W+ + Xy X Wp)

We will just evaluating derivative of o at (x3 X Wy + X X Wy + -+« + X, X W)

B — Ty

Functions with Multiple Vector Inputs

Vector Functions and Their Derivatives: The Backward
Pass

Math
o Oyo
ax = g0 (VX W) x G (X, W)
The first part of this is simply
%(V(X, W)) = %(xl X WL+ Xo X Wo+ -+ Xp X Wp)

We will just evaluating derivative of o at (x3 X Wy + X X Wy + -+« + X, X W)
Furthermore, we reasoned that g—; =wT

B — Ty

Functions with Multiple Vector Inputs

Vector Functions and Their Derivatives: The Backward
Pass

Math
o Oyo
ax = g0 (VX W) x G (X, W)
The first part of this is simply
%(V(X, W)) = %(xl X WL+ Xo X Wo+ -+ Xp X Wp)

We will just evaluating derivative of o at (x3 X Wy + X X Wy + -+« + X, X W)
Furthermore, we reasoned that g—; =WT Thus,

g—)s(:%(XlxW1+x2><W2+---+x,,><W,,)>< wT

B — Ty

Functions with Multiple Vector Inputs

Vector Functions and Their Derivatives: The Backward

Pass
Code

def natrix_fu

ton_backward_1(X: ndarray,
W: ndarray,
sigma: Array_Function) -> ndarray:

on with respect to

assert X.shape[1] == W.shape[©]

matrix rultiplication

N = np.dot(X, N)

feeding the output of the matrix multiplication through sigma

S = sigma(N)

backward calculation

dSdN = deriv(signa, N)

dvdx

dNdX = np.transpose(W, (1, 0))

multiply them together; since dWdX is 1x1 here, order doesn't matter

return np.dot(dSdN, dnNdX)

November 2, 2022

57 /70

Outline

© Computational Graph with Two 2D Matrix Inputs

B — Ty e

Two 2D Matrix Inputs and One Matrix Output

@ In deep learning we deal with operations that take as input two 2D
arrays, one of which represents a batch of data X and the other of
which represents the weights W.

B — T EE Ty ey

Two 2D Matrix Inputs and One Matrix Output

@ In deep learning we deal with operations that take as input two 2D
arrays, one of which represents a batch of data X and the other of
which represents the weights W.

011 012 X11 X12 X13 w11 wi2
021 022 =] x21 Xx22 X23 W21 W22
031 033 Ji3,5) L X381 X32 X33 [3.5)| W31 W32 |3,

B — T EE Ty ey

Computational Graph with Two 2D Matrix Inputs

Two 2D Matrix Inputs and One Matrix Output

@ In deep learning we deal with operations that take as input two 2D
arrays, one of which represents a batch of data X and the other of
which represents the weights W.

011 012 X11 X12 X13 w11 wi2
=] x21 Xx22 X23 W21 W22

021 022 =
031 033 X31 X32 X33 W31 W32
(3x2) (3x3) (3x2)

o Lets calculate %(X)

B — T EE Ty ey

Two 2D Matrix Inputs and One Matrix Output

@ In deep learning we deal with operations that take as input two 2D
arrays, one of which represents a batch of data X and the other of
which represents the weights W.

011 012 X11 X12 X13 w11 Wi2
021 022 =| X211 X22 X23 W21 W22
031 033 X31 X32 X33 W31 W32
(3x2) (3x3) (3x2)

o Lets calculate %(X)

@ How the output changes when you change the input X

B — T EE Ty ey

Two 2D Matrix Inputs and One Matrix Output

@ In deep learning we deal with operations that take as input two 2D
arrays, one of which represents a batch of data X and the other of
which represents the weights W.

011 012 X1 X12 X13 w1l wi2
021 022 =] X211 X2 X23 wo1 W22
031 033 |(3,0) L X381 X322 X33 [3.5) [wa1 wa2 [,

o Lets calculate %(X)
@ How the output changes when you change the input X
° %(X) is (3 x 3) matrix

B — T EE Ty ey

Two 2D Matrix Inputs and One Matrix Output

e Often we write %(X) = ones » WT
11
N Wil W1 Wwap
11 Wiz W22 W32 |53

(3x2)

@ This representation will be of great help in the computation of the
chain rule.

B — T EE ey

Mahmoud Mahmoud

Complex Computational Graph

Diagram
Two matrices are multiplied, then elementwise sigmoid, then summation of
the output.

Back propogation
KN N\KT Nk N\
Loss gradient
X —> - - —> - —» Prediction— Loss —» L
4 Classvalues
Y
Nm— —
Input Hidden layer Output
layer layer

B — Ty

Complex Computational Graph

Math
Two matrices are multiplied, then elementwise sigmoid, then summation of
the output.

L=N(o(v(X,W)))

° W(Xa W) = X(3><3) X W(3><2)

B — T EaE ey ()

Complex Computational Graph

Math
Two matrices are multiplied, then elementwise sigmoid, then summation of
the output.

L=N(o(v(X,W)))

° W(Xa W) = X(3><3) X W(3><2)

@ o(.) is elementwise sigmoid

B — T EaE ey ()

Complex Computational Graph

Math
Two matrices are multiplied, then elementwise sigmoid, then summation of
the output.

L=N(o(v(X,W)))

° W(Xa W) = X(3><3) X W(3><2)
@ o(.) is elementwise sigmoid

@ A(.) is summation of the input

B — T EaE ey ()

Computational Graph with Two 2D Matrix Inputs

Complex Computational Graph

Math
Two matrices are multiplied, then elementwise sigmoid, then summation of

the output.

o(x11wir + x12wo1 + X13W31) o (X11Wi2 + X12W2 + X13W32)
U(X21 W11 + X22W21 + X23 W31) U(X21 W12 + Xo2W22 + X23 W32)

sum
o(xa1wan +Xx3awo1 +x33wW31) 0 (X31Wi2 +X32W22 +X33W32) [3.9

B — T EE ey (B

The Backward Pass

Math

dL dA do dvy
dX du (5) du(N) 8 du(X)

B — November 2, 2022 66 /70

The Backward Pass

Math

11
A
MNesy=|1 1
du 11
(3x2)

Oo(o11) Oo(012)
ﬂ (N) _ 80’?321) 30(?322)
du

du du
80’(031) ('90'(032)
ou ou (3x2)

dy
- %)= Wh.3

B — Ty (3

The Backward Pass

Math

dL do dvy
X d() g) x (%)

@ Note, second multiplication is element-wise multiplication, while first
is matrix multiplication.

@ Thus is a (3 x3) matrix as expected

' d7

B — T

References

@ Seth Weidman "Deep Learning from Scratch Building with
Python from First Principles”

B — TEar ey (B

Questions ?

November 2, 2022 70/70

	Background
	Mathematical Foundation
	Functions
	Derivatives
	Nested Functions
	The Chain Rule

	Functions with Multiple Inputs
	Functions with Multiple Vector Inputs
	Computational Graph with Two 2D Matrix Inputs
	

