Intro to Machine Learning

Dr. Mahmoud Nabil

Dr. Mahmoud Nabil mnmahmoud@ncat.edu

North Carolina A & T State University

January 25, 2023

э



2 More Machine Learning Concepts

Operation of the second sec

(日) (四) (日) (日) (日)

Outline

2 More Machine Learning Concepts

- 3 Preprocessing Data
- 4 Evaluation Metrics

э

(日) (四) (日) (日) (日)

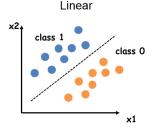
Logistic Regression Introduction

Logistic Regression

It is a statistical model used for binary classification. The inputs are the features values and the output (y) is a probability from 0 to 1.

Note that

- Logistic regression is a linear classifier.
- The equation of the decesion boundry : 0 = w₂x₂ + w₁x₁ + w₀
- Class 0 condition:
 - $0 < w_2 x_2 + w_1 x_1 + w_0$
- Class 1 condition:
 0 > w₂x₂ + w₁x₁ + w₀



▲ □ ▶ ▲ 三 ▶ ▲ 三

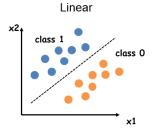
Logistic Regression Introduction

Logistic Regression

It is a statistical model used for binary classification. The inputs are the features values and the output (y) is a probability from 0 to 1.

Note that

- Logistic regression is a linear classifier.
- The equation of the decesion boundry : 0 = w₂x₂ + w₁x₁ + w₀
- Class 0 condition:
 - $0 < w_2 x_2 + w_1 x_1 + w_0$
- Class 1 condition:
 - $0 > w_2 x_2 + w_1 x_1 + w_0$

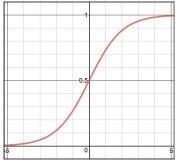


How get y' as probability given these conditions?

Sigmoid Function

• In order to map predicted values to probabilities, we use the sigmoid function.

$$sigmoid(z) = \sigma(z) = \frac{1}{1+e^{-z}}$$



イロト イポト イヨト イヨト

э

Logistic Regression

• We can set decesion boundary $z = w_2x_2 + w_1x_1 + w_0$

• Then
$$y' = \sigma(z) = \frac{1}{1+e^{-z}}$$

- What if point (x_1, x_2) is below the decesion boundary?
- What if point (x₁, x₂) is above the decesion boundary?

•
$$\frac{d}{dz}\sigma(z) = \sigma(z)(1-\sigma(z))$$

イロト イヨト イヨト イヨト

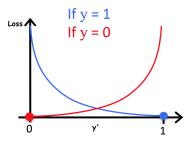
• Since y' in logistic regression is a probability between 0 and 1.

イロト イボト イヨト イヨト

- Since y' in logistic regression is a probability between 0 and 1.
- Our loss can be defined with the following loss function.

• if
$$y = 1$$
 : Loss = $-\log(y')$

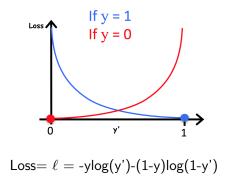
• if y = 0 : Loss = $-\log(1-y')$



- Since y' in logistic regression is a probability between 0 and 1.
- Our loss can be defined with the following loss function.

• if
$$y = 1$$
 : Loss = $-\log(y')$

• if y = 0 : Loss = $-\log(1-y')$

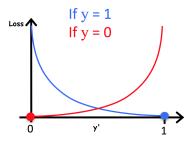


イロト イヨト イヨト イヨト

- Since y' in logistic regression is a probability between 0 and 1.
- Our loss can be defined with the following loss function.

• if
$$y = 1$$
 : Loss = $-\log(y')$

• if y = 0 : Loss = $-\log(1-y')$



 $\mathsf{Loss} = \ell = -\mathsf{ylog}(\mathsf{y'}) - (1 - \mathsf{y})\mathsf{log}(1 - \mathsf{y'})$

Generalization and Gradient

• For n features:
$$z = \sum_{i=0}^{i=n} w_i x_i$$
, (w_0 is the bias)

• vector representation
$$z = \mathbf{w}^T \mathbf{x}$$

•
$$y' = sigmoid(z) = \sigma(z)$$

•
$$\ell = -y \log(y') - (1 - y) \log(1 - y')$$

イロト イヨト イヨト イヨト

Gradient Derivation

$$\frac{d\ell}{dw_i} = \frac{d\ell}{dy'}\frac{dy'}{dw_i} = \frac{d\ell}{dy'}\frac{dy'}{dz}\frac{dz}{dw_i}$$

イロト イポト イミト イミト 一日

Gradient Derivation

$$\frac{d\ell}{dw_{i}} = \frac{d\ell}{dy'} \frac{dy'}{dw_{i}} = \frac{d\ell}{dy'} \frac{dy'}{dz} \frac{dz}{dw_{i}}$$

$$= \underbrace{\left[\frac{-y}{\sigma(z)} + \frac{1-y}{1-\sigma(z)}\right]}_{\frac{d\ell}{dy'}} \underbrace{\underbrace{\sigma(z)(1-\sigma(z))}_{\frac{dy'}{dz}} \underbrace{\underbrace{\sigma(z)}_{\frac{dz}{dw_{i}}}}_{\frac{dz}{dw_{i}}} \underbrace{\underbrace{\left[\frac{-y(1-\sigma(z)) + (1-y)\sigma(z)}{\sigma(z)(1-\sigma(z))}\right]}_{\frac{d\ell}{dy'}} \underbrace{\underbrace{\sigma(z)(1-\sigma(z))}_{\frac{dy'}{dz}} \underbrace{\underbrace{\sigma(z)}_{\frac{dz}{dw_{i}}}}_{\frac{dz}{dw_{i}}} \underbrace{\underbrace{\left[\frac{-y(1-\sigma(z)) + (1-y)\sigma(z)}{\sigma(z)(1-\sigma(z))}\right]}_{\frac{d\ell}{dy'}} \underbrace{\underbrace{\sigma(z)(1-\sigma(z))}_{\frac{dy'}{dz}} \underbrace{\frac{dz}{dw_{i}}}_{\frac{dz}{dw_{i}}} \underbrace{\underbrace{\sigma(z)(1-\sigma(z))}_{\frac{dy'}{dz}} \underbrace{\frac{dz}{dw_{i}}}_{\frac{dz}{dw_{i}}} \underbrace{\frac{dz}{dw_{i}}}_{\frac{dz}{dw_{i}}} = \underbrace{\left[\frac{-y(1-\sigma(z)) + (1-y)\sigma(z)}{\sigma(z)(1-\sigma(z))}\right]}_{\frac{d\ell}{dy'}} \underbrace{\frac{\sigma(z)(1-\sigma(z))}{\frac{dy'}{dz}} \underbrace{\frac{dz}{dw_{i}}}_{\frac{dz}{dw_{i}}} \underbrace{\frac{dz}{dw_{i}}}_{\frac{dz}{dw_{i}}} \underbrace{\frac{dz}{dw_{i}}}_{\frac{dz}{dw_{i}}} = \underbrace{\left[\frac{\sigma(z) - y\right] * x_{i}}_{\frac{dz}{dy'}} \underbrace{\frac{dz}{dw_{i}}}_{\frac{dz}{dy'}} \underbrace{\frac{dz}{dw_{i}}}_{\frac{dz}{dw_{i}}} \underbrace{\frac{dz}{dw_{i}}}_{\frac{dz}{dw_{$$

Dr. Mahmoud Nabil

January 25, 2023 10 / 39

Summary Linear vs Logistic Regression

Linear Regression

•
$$y' = \mathbf{w}^T \mathbf{x}$$

•
$$\ell = (y - y')^2$$

•
$$\frac{d\ell}{dw_i} = [2(y'-y) * x_i]$$

Logistic Regression • $z = \mathbf{w}^T \mathbf{x}$ • $y' = sigmoid(z) = \frac{1}{1+e^{-z}}$ • $\ell = -y\log(y')-(1-y)\log(1-y')$ • $\frac{d\ell}{dw_i} = (y'-y) * x_i$

イロト イポト イヨト イヨト 二日

Summary Linear vs Logistic Regression

Linear Regression • $y' = \mathbf{w}^T \mathbf{x}$ • $\ell = (y - y')^2$ • $\frac{d\ell}{dw_i} = [2(y' - y) * x_i]$ Logistic Regression • $z = \mathbf{w}^T \mathbf{x}$ • $y' = sigmoid(z) = \frac{1}{1 + e^{-z}}$ • $\ell = -y \log(y') - (1 - y) \log(1 - y')$ • $\frac{d\ell}{dw_i} = (y' - y) * x_i$

Loss is convex function interms of the weights (y' is function of the weights)

(人間) トイヨト イヨト ニヨ

Outline

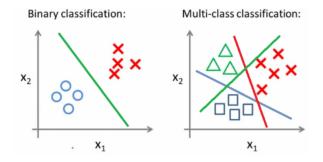
2 More Machine Learning Concepts

3 Preprocessing Data

э

イロト イヨト イヨト イヨト

Multiclass Classification (One vs All)



For Three classes Result Class = $\underset{k \in \{1,2,3\}}{\operatorname{argmax}} f_k(x)$

From Linear to non-Linear (Feature Crosses)

• Our basic equation for one feature linear regression is

 $y' = w_1 x_1 + w_0$

- Having the following equation allow us to fit quadratic input x_1 $y' = w_2(x_1)^2 + w_1x_1 + w_0$
- The same is applicable for the Logistic Regression we can learn non linear decesion boundries
- By this trick we can increase the model complexity.

(日) (四) (日) (日) (日)

From Linear to non-Linear (Feature Crosses)

• Our basic equation for one feature linear regression is

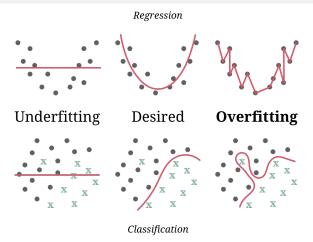
 $y' = w_1 x_1 + w_0$

- Having the following equation allow us to fit quadratic input x_1 $y' = w_2(x_1)^2 + w_1x_1 + w_0$
- The same is applicable for the Logistic Regression we can learn non linear decesion boundries
- By this trick we can increase the model complexity.

But how this effect the learning?

(日) (四) (日) (日) (日)

Overfitting and Underfitting (1/2)



Note

A good model (best fit) should be able to generalize to new (unseen) data. How?

Dr. Mahmoud Nabil

Overfitting and Underfitting (2/2)

• Over-fitting:

- Model too complex (flexible)
- Fits "noise" in the training data
- High error is expected on the test data.

• Under-fitting:

- Model too simplistic (too rigid)
- Not powerful enough to capture salient patterns in training data and test data.

January 25, 2023

16/39

Note

A good model (best fit) should be able to generalize to new (unseen) data. How?

Training and Test Sets

To measure how our model generalize, we split our data to

- Training set a subset to train a model.
- **Test set** a subset to evaluate the trained model Estimeate Generalization.

< □ > < □ > < □ > < □ > < □ > < □ >

Training and Test Sets

To measure how our model generalize, we split our data to

- Training set a subset to train a model.
- **Test set** a subset to evaluate the trained model Estimeate Generalization.

Training Set

Test Set

The test should:

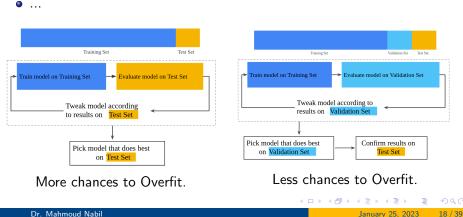
- be large enough to yield statistically meaningful results.
- be representative of the data set as a whole.

Training Data

Validation Set

What if we have several model to compare and pick only one?

- Adding or removing features
- Trying different model complexities (linear, quadratic, etc)



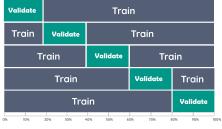
K-Cross Validation

Why?

- We can be exposed to the test set only once.
- We need to estimate future error as accurately as possible.

Ex.

- Randomly split the training into k sets.
- Validate on one in each turn (train on 4 others)
- Average the results over 5 folds



5-fold cross validation

- **(周) (3) (3)**

э

Training vs. Generalization Error (1/3)

Training Error: It measures how we are performing on the training set (same as loss).

$$E_{train} = \frac{1}{|D_{train}|} \sum_{(\mathbf{x}, y) \in D_{train}} error(f(\mathbf{x}), y)$$

Generalization Error:

• How well we will do on any kind future data from the same distribution.

$$E_{gen} = \int_{(\mathbf{x}, y) \in D} error(f(\mathbf{x}), y) \underbrace{p(\mathbf{x}, y)}_{\text{How often we see } (\mathbf{x}, y) \text{ pair}} d\mathbf{x}$$

(日)

Training vs. Generalization Error (1/3)

Training Error: It measures how we are performing on the training set (same as loss).

$$E_{train} = \frac{1}{|D_{train}|} \sum_{(\mathbf{x}, y) \in D_{train}} error(f(\mathbf{x}), y)$$

Generalization Error:

• How well we will do on any kind future data from the same distribution.

$$E_{gen} = \int_{(\mathbf{x}, y) \in D} error(f(\mathbf{x}), y) \underbrace{p(\mathbf{x}, y)}_{\text{How often we see } (\mathbf{x}, y) \text{ pair}} d\mathbf{x}$$

Can never compute generalization error practically

イロト 不得 トイヨト イヨト

Training vs. Generalization Error (2/3)

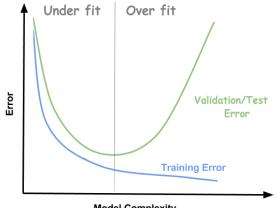
Test Error:

- Introduced to estimate the generalization error.
- That is why we should be exposed to test set only once.

$$E_{test} = \frac{1}{|D_{test}|} \sum_{(\mathbf{x}, y) \in D_{test}} error(f(\mathbf{x}), y)$$

• How close E_{gen} to E_{test} ? depends on $|D_{test}|$. $\lim_{|D_{test}| \to \infty} E_{test} \approx E_{gen}$

Training vs. Generalization Error (3/3)



Model Complexity

э

(日)

Regularization

- Sparse feature vectors often contain many dimensions. Feature cross results in even more dimensions (more model complexity).
- Can we force the weights for the meaningless features to drop to 0.

L2 and L1 penalize weights differently:

• L₂ penalizes *weight*². (L2 has not a discontinuity at 0)

•
$$\ell_{new} = \ell_{old} + p \sum_{i=0}^{l=n} w_i^2$$

•
$$\frac{\ell_{new}}{dw_i} = \frac{\ell_{old}}{dw_i} + 2p w_i$$

• L₁ penalizes |*weight*|. (L1 has a discontinuity at 0)

•
$$\ell_{new} = \ell_{old} + p \sum_{i=0}^{l=n} |w_i|$$

•
$$\frac{\ell_{new}}{dw_i} = \frac{\ell_{old}}{dw_i} + p \ sign(w_i)$$

p is the tuning parameter which decides how much we want to penalize $w_{j_{\alpha}}$

Outline

1 Logistic Regression

2 More Machine Learning Concepts

O Preprocessing Data

4) Evaluation Metrics

э

イロト イヨト イヨト イヨト

Scaling feature values

Scaling

Scaling means converting floating-point feature values from their natural range (for example, 100 to 900) into a standard range (for example, 0 to 1 or -1 to +1).

Why?

- Helps gradient descent converge more quickly.
- **2** Helps to decrease the possibility of weights over/under-flow.
- Helps the model learn appropriate weights for each feature. Without feature scaling, the model will pay too much attention to the features having a wider range.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Min Max Scaler

Transform features by scaling each feature(f) to a given range [Min, Max].

$$u = \frac{f - f.min}{f.max - f.min}$$

$$f_{scaled} = u * (Max - Min) + Min$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

3

Z-score Scaler

Another popular scaling tactic is to calculate the Z score of each feature (f). The Z score relates the number of standard deviations away from the mean. In other words:

$$f_{scaled} = (f - f.mean)/f.std_dev$$

イロト イポト イヨト イヨト

Issues in the Datasets

In real-life, many examples in data sets are unreliable due to one or more of the following:

- **Omitted values.** For instance, a person forgot to enter a value for a house's age.
 - $\bullet\,$ Categorical ("N/A") , "fill-in mean", remove ,other methods rule-learners, decision trees
- **Duplicate examples.** For example, a server mistakenly uploaded the same logs twice.
 - Remove duplicates
- **Bad labels.** For instance, a person mislabeled a picture of cat as a dog.
 - Clustering can help
- Bad feature values/Outliers. For example, someone typed in an extra digit, or a thermometer was left out in the sun.
 - Histogram can help.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

How to Handle?

Always try to visualize the features. Histograms are also great mechanism

for visualizing your data in the aggregate. In addition, getting statistics like the following can help:

- Maximum and minimum
- Mean and median
- Standard deviation

- 4 目 ト - 4 日 ト

Outline

1 Logistic Regression

2 More Machine Learning Concepts

3 Preprocessing Data

4 Evaluation Metrics

э

イロト イヨト イヨト イヨト

Thresholding

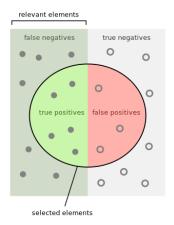
- In order to map a logistic regression value to a binary category, we must define a classification threshold.
- Classification threshold is problem-dependent.
- It does not have to be 0.5.
- Classification metrics are used to define the classification threshold.

(4 何) トイヨト イヨト

Confusion Matrix

Confusion Matrix

	Actually Positive (1)	Actually Negative (0)
Predicted Positive (1)	True Positives (TPs)	False Positives (FPs)
Predicted Negative (0)	False Negatives (FNs)	True Negatives (TNs)



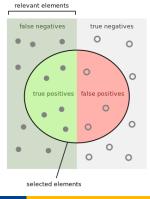
イロト イボト イヨト イヨト

We want large diagonal, small FP, FN

э

۲	Accuracy	is	the	total	correct	prediction	L

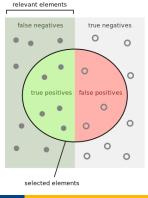
	Actually Positive (1)	Actually Negative (0)	
Predicted Positive (1)	True Positives (TPs)	False Positives (FPs)	Ρ'
Predicted Negative (0)	False Negatives (FNs)	True Negatives (TNs)	Ν'
	Р	N	



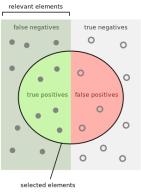
		Actually Positive (1)	Actually Negative (0)	
	Predicted Positive (1)	True Positives (TPs)	False Positives (FPs)	P'
al correct prediction	Predicted Negative (0)	False Negatives (FNs)	True Negatives (TNs)	N'
		Р	N	

• Accuracy is the total correct prediction

 $\frac{TP+TN}{TP+TN+FP+FN}$



		Positive (1)	Negative (0)	
	Predicted Positive (1)	True Positives (TPs)	False Positives (FPs)	P'
• Accuracy is the total correct prediction	Predicted Negative (0)	False Negatives (FNs)	True Negatives (TNs)	N'
		Р	N	
• $\frac{TP+TN}{TP+TN+FP+FN}$	relevant	elements		
 Error is the total false prediction 	false ne	gatives	true negativ	/es



Actually Actually

		Actually Positive (1)	Actually Negative (0)	
	Predicted Positive (1)	True Positives (TPs)	False Positives (FPs)	P'
• Accuracy is the total correct prediction	Predicted Negative (0)	False Negatives (FNs)	True Negatives (TNs)	Ν'
		Р	N	
• $\frac{TP+TN}{TP+TN+FP+FN}$	relevant (elements		
• Error is the total false prediction	false ne	gatives	true negativ	es
• $\frac{FP+FN}{TP+TN+FP+FN} = 1$ - Accuracy	• •	•	0	0
	true	e positives f	o alse positives) 0

0

0

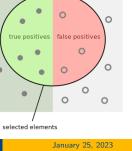
0

.

.

selected elements

		Actually Positive (1)	Actually Negative (0)	
	Predicted Positive (1)	True Positives (TPs)	False Positives (FPs)	Ρ'
• Accuracy is the total correct prediction	Predicted Negative (0)	False Negatives (FNs)	True Negatives (TNs)	N'
		Р	N	
• $\frac{TP+TN}{TP+TN+FP+FN}$	relevant	elements		
 Error is the total false prediction 	false ne	gatives	true negativ	es.
• $\frac{FP+FN}{TP+TN+FP+FN} = 1$ - Accuracy	•	•	0	0
• Problem: cannot handle unbalanced	~ /			
classes		•	• \	0



	_					
۲	Accuracy	is	the	total	correct	prediction

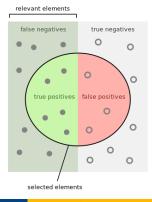
 $\frac{TP+TN}{TP+TN+FP+FN}$

• Error is the total false prediction

•
$$\frac{FP+FN}{TP+TN+FP+FN} = 1$$
 - Accuracy

- Problem: cannot handle unbalanced classes
 - Predict whether an earthquake is about to happen

	Actually Positive (1)	Actually Negative (0)	
Predicted Positive (1)	True Positives (TPs)	False Positives (FPs)	P'
Predicted Negative (0)	False Negatives (FNs)	True Negatives (TNs)	N
	Р	N	



۲	Accuracy	is	the	total	correct	prediction
---	----------	----	-----	-------	---------	------------

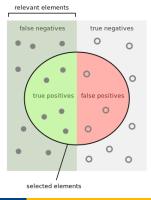
• $\frac{TP+TN}{TP+TN+FP+FN}$

• Error is the total false prediction

• $\frac{FP+FN}{TP+TN+FP+FN} = 1$ - Accuracy

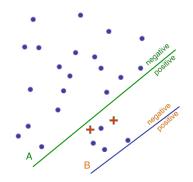
- Problem: cannot handle unbalanced classes
 - Predict whether an earthquake is about to happen
 - Happen very rarely, very good accuracy if always predict "No".

	Actually Positive (1)	Actually Negative (0)	
Predicted Positive (1)	True Positives (TPs)	False Positives (FPs)	Ρ'
Predicted Negative (0)	False Negatives (FNs)	True Negatives (TNs)	Ν'
	Р	N	



Problem with Accuracy

You're predicting cancer possiblity (+)
 vs. not (•)

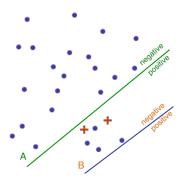


< A > <

э

Problem with Accuracy

- You're predicting cancer possiblity (+)
 vs. not (•)
- Accuracy will prefer classifier B (fewer errors)

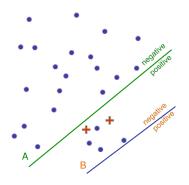


< 1 k

э

Problem with Accuracy

- You're predicting cancer possiblity (+)
 vs. not (•)
- Accuracy will prefer classifier B (fewer errors)
- Classifier A is better though.



Metrics (1/3)

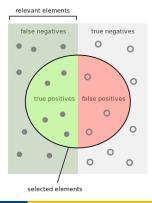
• **Recall** How many (+) we hit? (Recall = Sensitivity = True pos rate = hit rate)

•
$$\frac{TP}{P} = \frac{TP}{TP+FN}$$

• Miss Rate How many (+) we miss? (Miss rate = False neg rate = false rejection = type II error rate)

•
$$1 - hitrate = \frac{FN}{P} = \frac{FN}{TP + FN}$$

	Actually Positive (1)	Actually Negative (0)	
Predicted Positive (1)	True Positives (TPs)	False Positives (FPs)	P'
Predicted Negative (0)	False Negatives (FNs)	True Negatives (TNs)	N'
	Р	N	

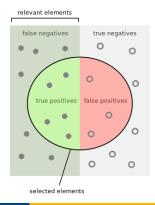


Metrics (2/3)

- Specificity How many (-) we hit? (Specificity = True neg rate) • $\frac{TN}{N} = \frac{TN}{EP+TN}$
- False Alarm How many (-) we miss OR How many (+) we falsely accepted? (False alarm = False pos rate = false acceptance = = type I error rate) How many irrelevant items are selected?

•
$$1 - Specificity = \frac{FP}{FP+TN}$$

	Actually Positive (1)	Actually Negative (0)	
Predicted Positive (1)	True Positives (TPs)	False Positives (FPs)	Ρ'
Predicted Negative (0)	False Negatives (FNs)	True Negatives (TNs)	N'
	Р	N	

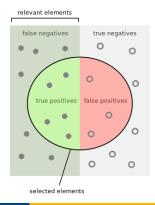


Metrics (2/3)

- Specificity How many (-) we hit? (Specificity = True neg rate) • $\frac{TN}{N} = \frac{TN}{EP+TN}$
- False Alarm How many (-) we miss OR How many (+) we falsely accepted? (False alarm = False pos rate = false acceptance = = type I error rate) How many irrelevant items are selected?

•
$$1 - Specificity = \frac{FP}{FP+TN}$$

	Actually Positive (1)	Actually Negative (0)	
Predicted Positive (1)	True Positives (TPs)	False Positives (FPs)	Ρ'
Predicted Negative (0)	False Negatives (FNs)	True Negatives (TNs)	N'
	Р	N	



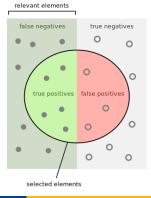
Metrics (3/3)

		Actually Positive (1)	Actually Negative (0)	
	Predicted Positive (1)	True Positives (TPs)	False Positives (FPs)	P
	Predicted Negative (0)	False Negatives (FNs)	True Negatives (TNs)	N'
		Р	N	

• **Prcesion** How many of our (+) decesions is correct?

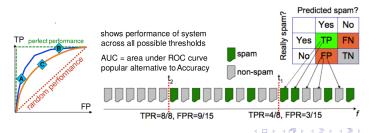
•
$$\frac{TP}{P'} = \frac{TP}{TP+FP}$$

• F1 measure Harmonic mean of precesion and the recall



ROC curves

- Plot TPR vs. FPR as classification threshold (t) varies from 0 to 1
- RoC summarizes all the confusion matrices for all possible thresholds.
- Each point on the RoC is for a different classification threshold.
- (1,1) point is all (+) threshold.
- (0,0) point is all (-) threshold.
- Benefits:
 - Make us make a decesion for classification threshold.
 - Make us compare different classifier using AUC.



ヘロア 人間 アメヨア 小田 アー

æ