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Introduction to RNN

Introduction

@ Recurrent neural networks are designed to handle data that appears in

sequences
@ Instead of each observation being a vector with, say, features, it is
now a two-dimensional array of dimension features by time steps.

n features Target

Time

f + f n+ tM

t = number of time steps
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Why this kind of data is different?

@ Suppose an application of converting your speech into text (i.e.,
automatic captioning system)

@ The previous matrix can encode the set of signal features at time
window t, and the target is the spoken word

@ Regular Neural Network shown below will give bad performance if
each target is predicted in isolation. Why?

Regular neural network

Input: vector  Vector of Vector of Prediction
of numeric  "features of network'sfinal  vector
features features” representation of
observation
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@ Suppose an application of converting your speech into text (i.e.,
automatic captioning system)

@ The previous matrix can encode the set of signal features at time
window t, and the target is the spoken word

@ Regular Neural Network shown below will give bad performance if
each target is predicted in isolation. Why?

Regular neural network

Input: vector  Vector of Vector of Prediction
of numeric  "features of network'sfinal  vector
features features” representation of
observation

Because the temporal dependency is ignored.
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RNN Solution

@ In the first time step, t = 1, the target is a function of the features
of the first time step

ECEN 678 March 27, 2023 5/33



RNN Solution

@ In the first time step, t = 1, the target is a function of the features
of the first time step

@ In the second time step, t = 2, we would pass the features of this
time along with a learned representation from the previous time step
feature to make to make predictions for t = 2.
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RNN Solution

@ In the first time step, t = 1, the target is a function of the features
of the first time step

@ In the second time step, t = 2, we would pass the features of this
time along with a learned representation from the previous time step
feature to make to make predictions for t = 2.

@ In the third time step, we would pass through the features from t = 3
as well as the representations that now incorporate the information
fromt = 1 and , t = 2 and use this information to make predictions
for t = 3.
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RNN Architecture
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RNN Input Data Shape

o RNNSs deal with data in which each input sample is
two-dimensional matrix, with shape
(sequence_length, num features)

o Since it is always more efficient computationally to
pass data forward in batches, the input size will be 3d
matrix of shape (batch size,sequence length,
num_features)

o Output is also 3d matrix with shape
(batch size,sequence length, output size)
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RNN Architecture And Order

Output array: [batch size,
sequence_length, output _size]
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RNN Architecture

Two key components of the RNN architecture:

@ RNN Node: It is the building block of the RNN layer. It processes
the input at each time step with the information learned from the
previous time step.

@ RNN Layer: It is a group of RNN nodes that process the input
sequence and can be cascaded for better overall performance.
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RNN Node
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RNN Node

@ RNN Node receive two inputs:
e The data inputs to the network, of shape (batch_size,
num_features)
o The learned representation "hidden state” up to this RNN node, shape
(batch_size, hidden_size)

@ RNN Node has two outputs:

o The outputs of the network at that time step, of shape (batch_size,
output_size)

o The learned representation "hidden state” up to this RNN node, shape
(batch_size, hidden_size)
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© Forward Pass
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RNN Layer and Forward Pass

© Prepare the 2d matrix to be input at the first RNN node from your 3d
training batch (batch_size,sequence_length, num features)
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RNN Layer and Forward Pass

© Prepare the 2d matrix to be input at the first RNN node from your 3d
training batch (batch_size,sequence_length, num features)

e datal:,0,:]
@ For the first RNN node initialize a random matrix hidden state of size
(batch_size, hidden_size) which will get continually updated
with the input sequence.
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RNN Layer and Forward Pass

© Prepare the 2d matrix to be input at the first RNN node from your 3d
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(batch_size, hidden_size) which will get continually updated
with the input sequence.
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@ Continue until all sequence_length passed through the layer.
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RNN Layer and Forward Pass

Prepare the 2d matrix to be input at the first RNN node from your 3d
training batch (batch_size,sequence_length, num features)

e datal:,0,:]
For the first RNN node initialize a random matrix hidden state of size
(batch_size, hidden_size) which will get continually updated
with the input sequence.

Pass these two arrays through the first RNN Node to get the next
hidden state of and the current output

o Output shape (batch_size, output_size)
e Hidden state shape (batch_size, hidden_size)

Continue until all sequence_length passed through the layer.

Concatenate all the results together to get an output from that layer
of shape (batch_size,sequence_length, output_size)
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@ Back Propagation Through Time
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Another Perspective of RNN
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@ It should be noted that the weights and biases are Shared through the
time
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Back Propagation Through Time

o Back propagation is done at each point in time.

o At timestep T, the derivative of the loss £ with
respect to each weight matrix W ) is calculated, and
the same W/ ) are updated.

o This cause a problem widely known as
vanishing /exploding gradient problem
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Vanishing/Exploding Gradient Problem - Vanilla RNN

Assume we have a hidden state a; at
time step t. If we make things simple
and remove biases and inputs, we

have
ar=o(w.as_1) ,yT,,
@ g2 . h
we can show that e Y0 {® (LT .
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The factored wi ™t is a crucial term.
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Vanishing/Exploding Gradient Problem

o If the weight w'* is less than 1, it will make the gradient decay to
zero exponentially fast when backpropagating t, — t time steps
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Vanishing/Exploding Gradient Problem

o If the weight w'* is less than 1, it will make the gradient decay to
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@ A nature question is do not we also have the product-sums of a
sigmoid term which can also decay very fast

@ The answer is yes, but if we are able to get rid of this term w' !, the
decay/growth rate will be lessened.
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Vanishing/Exploding Gradient Problem

o If the weight w'* is less than 1, it will make the gradient decay to
zero exponentially fast when backpropagating t, — t time steps

o If the weight w' ' is greater than 1, it will make the gradient grows
exponentially fast when backpropagating t, — t time steps

@ A nature question is do not we also have the product-sums of a
sigmoid term which can also decay very fast

@ The answer is yes, but if we are able to get rid of this term w' !, the
decay/growth rate will be lessened.

@ Note, the original proof is very mathematically rigor
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Vanilla RNN Two Perspectives
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Gate is simply weight multiplication, bias addition, and activation
function (sigmoid[0,1]/tanh[-1,1]).
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Other RNN Nodes Design

Modifications

We will update the previous architecture by introducing some gates :

Update Gate [0,1]: How much past should matter now?
Reset Gate [0,1]: Reset previous information?

Forget Gate: Erase a cell or not? (Important in LSTM)

Output Gate: How much to reveal to the output?
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Other RNN Nodes Design

Gated Recurrent Unit (GRU)
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Back propagation with GRU

We can show that the gradient received by the hidden state is in the form
i=tp—t

O 1 0'()

Ost i1
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Long Short Term Memory (LSTM)

@ LSTM is the first solution to the vanishing gradient problem

@ It is much more complicated than the GRU
@ Each LSTM node has two inputs as usual and three outputs
e Hidden State
o Cell State
o Output
@ The cell state is meant to encode a kind of aggregation of data from
all previous time-steps that have been processed, while the hidden
state is meant to encode a kind of characterization of the previous
time-step's data.
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Other RNN Nodes Design

Long Short Term Memory (LSTM)
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© RNN Applications
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Language Modeling

@ Language modeling is one of the most common tasks RNNs are used
for.

@ A neural network that learns to write text in the style of Shakespeare
i
@ The hardest part is building the training data !!

@ We can use one hot encoding to represent each word as big vector of
zeros and a single one at the word position in the vocabulary
dictionary

@ Then determining the sequence length, and start building the training
data
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RNN Applications

Sentiment Classification
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Named Entity Recognition
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RNN Applications

Machine Translation
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RNN Applications
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