ECEN 478: Senior Design

ECEN 478

Dr. Mahmoud Nabil Mahmoud mnmahmoud@ncat.edu

North Carolina A & T State University

April 20, 2022

ECEN 478

Outline

- Introduction
- Work Breakdown
- Time Analysis
 - Network Diagrams
 - Gantt Chart
- 4 Cost Analysis

Motivation

- Engineers are regularly engaged in projects in their careers!
- Middle management continues to shrink
- Industry now organizes more around projects than functions.

3/36

Motivation, cont'd

• Engineers have led the way on project management, it is now "hot and trendy".

Motivation, cont'd

- Engineers have led the way on project management, it is now "hot and trendy".
- #1 Area of Continuing Education reported by Penn State Behrend ECE alumni.

Motivation, cont'd

- Engineers have led the way on project management, it is now "hot and trendy".
- #1 Area of Continuing Education reported by Penn State Behrend ECE alumni.
- Penn State Behrend School of Engineering Survey
 2003 of Fortune 500 companies- #1 required skill for new engineers = PROJECT MANAGEMENT SKILLS

The HOLY GRAIL!

To complete the project

- With available labor
- On-time
- Within budget
- So that it meets the requirements

5/36

By the end of this chapter, you should

• Be able to create a work breakdown structure.

By the end of this chapter, you should

- Be able to create a work breakdown structure.
- Be able to create network diagrams and Gantt charts.

6/36

By the end of this chapter, you should

- Be able to create a work breakdown structure.
- Be able to create network diagrams and Gantt charts.
- Be able to determine the critical path for completing a project and the float time for each activity in the plan.

By the end of this chapter, you should

- Be able to create a work breakdown structure.
- Be able to create network diagrams and Gantt charts.
- Be able to determine the critical path for completing a project and the float time for each activity in the plan.
- Be able to conduct break-even analysis and understand some basic methods of cost estimation.

6/36

By the end of this chapter, you should

- Be able to create a work breakdown structure.
- Be able to create network diagrams and Gantt charts.
- Be able to determine the critical path for completing a project and the float time for each activity in the plan.
- Be able to conduct break-even analysis and understand some basic methods of cost estimation.
- APPLY THIS TO YOUR PROJECT YOU MUST LEARN BY DOING!

• Usually is part of the engineering design team

7/36

- Usually is part of the engineering design team
- Leads the development of Project Plan components

- Usually is part of the engineering design team
- Leads the development of Project Plan components
 - Work Breakdown Structure (for delegating tasks)

- Usually is part of the engineering design team
- Leads the development of Project Plan components
 - Work Breakdown Structure (for delegating tasks)
 - Network Diagram (depicts dependencies)

- Usually is part of the engineering design team
- Leads the development of Project Plan components
 - Work Breakdown Structure (for delegating tasks)
 - Network Diagram (depicts dependencies)
 - Gantt Chart (depicts time-line)

- Usually is part of the engineering design team
- Leads the development of Project Plan components
 - Work Breakdown Structure (for delegating tasks)
 - Network Diagram (depicts dependencies)
 - Gantt Chart (depicts time-line)
 - Cost Estimate

- Usually is part of the engineering design team
- Leads the development of Project Plan components
 - Work Breakdown Structure (for delegating tasks)
 - Network Diagram (depicts dependencies)
 - Gantt Chart (depicts time-line)
 - Cost Estimate
 - Risk Assessment



- Usually is part of the engineering design team
- Leads the development of Project Plan components
 - Work Breakdown Structure (for delegating tasks)
 - Network Diagram (depicts dependencies)
 - Gantt Chart (depicts time-line)
 - Cost Estimate
 - Risk Assessment
- Monitors checkpoints built into the plan

7 / 36

- Usually is part of the engineering design team
- Leads the development of Project Plan components
 - Work Breakdown Structure (for delegating tasks)
 - Network Diagram (depicts dependencies)
 - Gantt Chart (depicts time-line)
 - Cost Estimate
 - Risk Assessment
- Monitors checkpoints built into the plan
- Has other task completion responsibilities

Outline

- Introduction
- Work Breakdown
- Time Analysis
 - Network Diagrams
 - Gantt Chart
- Cost Analysis

Work Breakdown Structure

Work Breakdown Structure (WBS)

A hirearical breakdown of the activities, tasks, dependencies, costs, and deliverables to be accomplished for the project

Activity

A task or a goup of tasks along with there associated deliverables

Tasks

Actions that accomplish a job

Deliverables

Items that result from the completion of the task, (should progress toward the project goals)

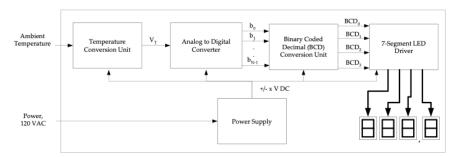
9/36

WBS - Other Descripitons

From MIL-HDBK 881

- A product-oriented family tree composed of hardware, software, services, data, and facilities. The family tree results from systems engineering efforts.
- A WBS displays and defines the product, or products, to be developed and/or produced. It relates the elements of work to be accomplished to each other and to the end product.

Elements in WBS


- Activities
- Responsibilities
- Timeline
- Dependencies
- Costs

HINT: THESE THINGS OUGHT TO BE IN YOUR PLAN!

Example - Thermometer Design

Problem: Create the WBS for a temperature monitoring system design

Example - Thermometer, cont'd

There are three main tasks

- The analog interface circuitry.
- The LED & digital circuitry.
- Integrate & Test.

Example - Thermometer, cont'd

- Activity: Design Circuitry
- Description: Complete the detailed design and verify it.
- **Deliverables/Checkpoints:** 1) Circuit schematic, and 2) Verify in simulation.
- Duration: 14 days.
- **People:** Jana (1), Rob (1)
- Resources: PC, SPICE Simulator
- Predecessors: none

Example - Thermometer Design

/ID	Activity	Description	Deliverables / Checkpoints	Duration (days)	People	Resources	Predeces sors
1	Interface Circuitry						
1.1	Design Circuitry	Complete the detailed design and verify it in simulation.	Circuit schematic Simulation verification	14	Rob (1) Jana (1)	• PC • SPICE simulator	
1.2	Purchase Components		Identify parts Place order Receive parts	10	Rob		1.1
1.3	Construct & Test Circuits	Build and test.					
1.3.1	Current Driver Circuitry	Test of circuit with sensing device.	Test data Measurement of linearity	2	Jana (1) Rob (2)	Test bench Thermometer	1.2
1.3.2	Level Offset & Gain Circuitry	Test of circuit with voltage inputs.	Test data Measurement of linearity	3	Rob (1) Jana (2)	Test bench	1.2
1.3.3	Integrate Components	Integrate the current driver and offset circuits.	Test data verifying functionality and linearity requirement	5	Rob (1) Jana (1)	• Test bench • Thermo- meter	1.3.1 1.3.2

ECEN 478 April 20, 2022 15 / 36

Activity Duration Estimates

PERT: Project Evaluation and Review Technique

- Statistical methods to estimate project completion time.
- Based on earlier studies that show that project task completion follows a Beta probability distribution

$$t_e = \frac{t_a + 4t_m + t_b}{5}$$

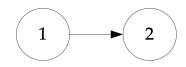
Outline

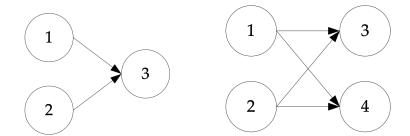
- Introduction
- Work Breakdown
- Time Analysis
 - Network Diagrams
 - Gantt Chart
- 4 Cost Analysis

Outline

- Introduction
- Work Breakdown
- Time Analysis
 - Network Diagrams
 - Gantt Chart
- Cost Analysis

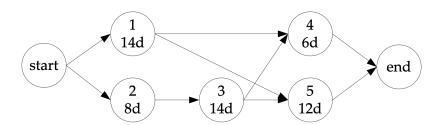
Network Diagrams


Network Diagram


A directed graph for the project that shows all the activities/tasks as (vertices) and the dependencies as (directed edges).

It is also known as AON (Activity on Node)

- Nodes = Activities
- Edges = dependencies


AON Basics

Example: Network Diagram

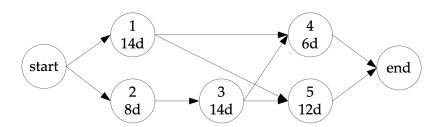
Problem: identify the paths to completion.

Network Diagram Definitions

Critical Path

The longest duration path in the network diagram.

Slippage (for an activity)


An activity that falls behind the schedule

Float (for an qctivity)

The amount of time that an activity can slip without extending the overall project completion time.

Excercise

Problem: Calculate the float for all activities in network.

Outline

- Introduction
- Work Breakdown
- Time Analysis
 - Network Diagrams
 - Gantt Chart
- Cost Analysis

Gantt Chart

It is a graphical representation for the WBS emphasizing the schedule

Task Name	Start	Finish	Duration	Jan 2005			Feb 2005			
				1/16	1/23	1/30	2/6	2/13	2/20	2/27
1: Interface Circuitry	1/10/2005	2/22/2005	32d						V	
1.1: Design Circuitry	1/10/2005	1/27/2005	14d							
1.2: Purchase Components	1/28/2005	2/10/2005	10d		→		-			
1.3: Construct & Test Circuits	2/11/2005	2/22/2005	8d				7		7	
1.3.1: Current Driver Circuitry	2/11/2005	2/14/2005	2d				→			
1.3.2: Level Offset & Gain Circuitry	2/11/2005	2/15/2005	3d				\			
1.3.3: Integrate Components	2/16/2005	2/22/2005	5d				l	-		
2: LED & Driver Circuitry	1/10/2005	2/9/2005	23d				7			
2.1 Research A/D Converters	1/10/2005	1/10/2005	1d							
2.2 Complete Hardware Design	1/11/2005	1/19/2005	7d							
2.3 Purchase LED & Driver Components	1/20/2005	2/2/2005	10d	≻ ■						
2.4: Construct & Test	2/3/2005	2/9/2005	5d			>				
3: System Integration & Test	2/23/2005	3/3/2005	7d					l	+	

Outline

- Introduction
- Work Breakdown
- Time Analysis
 - Network Diagrams
 - Gantt Chart
- Cost Analysis

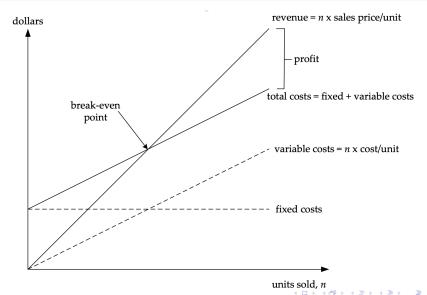
How do you complete projects within cost?

- How do you complete projects within cost?
- Need to be able to estimate costs for

- How do you complete projects within cost?
- Need to be able to estimate costs for
 - System design → Fixed

- How do you complete projects within cost?
- Need to be able to estimate costs for
 - System design → Fixed
 - Development → Fixed

- How do you complete projects within cost?
- Need to be able to estimate costs for
 - System design → Fixed
 - Development → Fixed
 - Manufacture → Variable


- How do you complete projects within cost?
- Need to be able to estimate costs for
 - System design → Fixed
 - Development → Fixed
 - Manufacture → Variable
- Basics presented here complex problem that requires experience.

Break-Even Analysis-Definations

- **Fixed costs** Constants costs despite the number of units produced (rent, design, research, facilities,..)
- Variable Costs Costs that varies with the number of units produced (# of labor, materials, power)
- Break-Even Point It is the point at which the revenue is equal to the total cost

Break-Even Analysis

Cost Models

Using the PERT model

$$Cost_e = \frac{Cost_a + 4Cost_m + Cost_b}{5}$$

IBM Model for software development man hours cost

$$effort_{worker_months} = a(KLOC)^b$$

- a = 5.2
- b = 0.91

Example

Consider a software development project that has a team of 10 software development engineers. The team has proposed a design and estimates that it will require 50,000 lines of code to complete the project. The average cost to the Company for an engineer is \$100,000 per year, including salary, benefits, and overhead. Estimate (a) the time required to the complete the project and (b) the labor costs.

Example

Consider a software development project that has a team of 10 software development engineers. The team has proposed a design and estimates that it will require 50,000 lines of code to complete the project. The average cost to the Company for an engineer is \$100,000 per year, including salary, benefits, and overhead. Estimate (a) the time required to the complete the project and (b) the labor costs.

Ans

• effort_{worker_months} = $a(KLOC)^b = 5.2(50)^{0.91} = 183$

Example

Consider a software development project that has a team of 10 software development engineers. The team has proposed a design and estimates that it will require 50,000 lines of code to complete the project. The average cost to the Company for an engineer is \$100,000 per year, including salary, benefits, and overhead. Estimate (a) the time required to the complete the project and (b) the labor costs.

Ans

- effort_{worker_months} = $a(KLOC)^b = 5.2(50)^{0.91} = 183$
- Since we have 10 developers, each developer needs 18.3 month to complete his work. Thus, labor costs = 18.3/12 * \$100,000 * 10 = 1.53 million

Bill of Materials (BOM)

- An all-inclusive list of items and material required to create a product (or prototype)
- Both a "shopping list" and a "recipe" for the product
- Answers the following questions
 - What to buy?
 - Where to buy?
 - How to assemble?

See examples at link given for related quiz preparation assignment

Guidance

- Take the initial time estimates for activities and double them!
- Assign a lot of time for testing and integration.
- Factor in lead times for part ordering.
- Assign a project manager(s).
- Do not assign all team members to all tasks.
- Track the progress versus the plan.
- Don't become a slave to the plan.
- Experience counts

Project Application

A Project Plan should contain

- Work Breakdown Structure. Identify the activities, deliverables, responsibilities, duration, resources, and dependencies.
- Gantt Chart and/or Network Diagram. Provide a graphical representation of the project plan.
- Costs. Develop a tabulated list of costs and for the equipment, materials, and labor necessary to carry out the project.

ECEN 478

34 / 36

Summary

- important objectives of project management are to complete the project
 - Labor
 - On-time
 - Within budget
 - To meet the needs of the user.
- WBS hierarchical breakdown of activities needed to complete a project.
- Network diagram graphical representation of activities for project can use for quantitative analysis of project.
- Cost estimates
 - Break-even analysis
 - Cost estimation models
 - BOM

Questions &

ECEN 478