
ECEN 377: Engineering Applications of AI

Dr. Mahmoud Nabil Mahmoud
mnmahmoud@ncat.edu

North Carolina A & T State University

October 3, 2024

October 3, 2024 1 / 47



SVM Intro

Outline

1 SVM Intro

2 SVM Loss Function
Classification Loss (Hinge Function)
Distance Loss Function (Large Margin)
Overall Loss Function

3 SVM Kernels (Non-linear Boundaries)

4 Non-linear SVM Decision Function

5 Training SVM
Hinge Loss Derivative

October 3, 2024 2 / 47



SVM Intro

Introduction to SVM

Which of the following is the best classifier? and why?

October 3, 2024 3 / 47



SVM Intro

Introduction to SVM

Which of the following is the best classifier? and why?

Classifier 2 is better because it has a larger margin between the classes.
Margin is the distance between the decision boundary and the closest data
points. (Support Vectors)

October 3, 2024 4 / 47



SVM Loss Function

Outline

1 SVM Intro

2 SVM Loss Function
Classification Loss (Hinge Function)
Distance Loss Function (Large Margin)
Overall Loss Function

3 SVM Kernels (Non-linear Boundaries)

4 Non-linear SVM Decision Function

5 Training SVM
Hinge Loss Derivative

October 3, 2024 5 / 47



SVM Loss Function

SVM Loss Function

How we should penalize misclassified
data points and maximize the

margin?

Loss Function =

Classification Loss

+

Distance Loss

Assume we aim to train a linear SVM on 2D data points (x1, x2).

October 3, 2024 6 / 47



SVM Loss Function

SVM Loss Function

How we should penalize misclassified
data points and maximize the

margin?

Loss Function =

Classification Loss

+

Distance Loss

Assume we aim to train a linear SVM on 2D data points (x1, x2).

October 3, 2024 6 / 47



SVM Loss Function Classification Loss (Hinge Function)

Outline

1 SVM Intro

2 SVM Loss Function
Classification Loss (Hinge Function)
Distance Loss Function (Large Margin)
Overall Loss Function

3 SVM Kernels (Non-linear Boundaries)

4 Non-linear SVM Decision Function

5 Training SVM
Hinge Loss Derivative

October 3, 2024 7 / 47



SVM Loss Function Classification Loss (Hinge Function)

Classification Loss Function

In SVM, Instead of using only the decision boundary, we use two parallel
imaginary lines shifted by bias.

Example:
Decision Boundary: 2x1 + 3x2 − 6 = 0

Imaginary Line (+ve):
2x1 + 3x2 − 6 = 1

Imaginary Line (-ve):
2x1 + 3x2 − 6 = −1

Note: Even correctly classified data points within the margin should be
penalized! How?

October 3, 2024 8 / 47



SVM Loss Function Classification Loss (Hinge Function)

Classification Loss Function

In SVM, Instead of using only the decision boundary, we use two parallel
imaginary lines shifted by bias.

Example:
Decision Boundary: 2x1 + 3x2 − 6 = 0

Imaginary Line (+ve):
2x1 + 3x2 − 6 = 1

Imaginary Line (-ve):
2x1 + 3x2 − 6 = −1

Note: Even correctly classified data points within the margin should be
penalized! How?

October 3, 2024 8 / 47



SVM Loss Function Classification Loss (Hinge Function)

Classification Loss

Requirement for Classification Loss:

Correct classification above the +ve margin has a loss value of zero.

Correct classification below the -ve margin has a loss value of zero.

Misclassified data points above the +ve margin have a loss value
greater than zero.

Misclassified data points below the -ve margin have a loss value
greater than zero.

Correctly classified data points within the margin have a loss value
greater than zero.

October 3, 2024 9 / 47



SVM Loss Function Classification Loss (Hinge Function)

Classification Loss

Requirement for Classification Loss:

Correct classification above the +ve margin has a loss value of zero.

Correct classification below the -ve margin has a loss value of zero.

Misclassified data points above the +ve margin have a loss value
greater than zero.

Misclassified data points below the -ve margin have a loss value
greater than zero.

Correctly classified data points within the margin have a loss value
greater than zero.

October 3, 2024 9 / 47



SVM Loss Function Classification Loss (Hinge Function)

Classification Loss

Requirement for Classification Loss:

Correct classification above the +ve margin has a loss value of zero.

Correct classification below the -ve margin has a loss value of zero.

Misclassified data points above the +ve margin have a loss value
greater than zero.

Misclassified data points below the -ve margin have a loss value
greater than zero.

Correctly classified data points within the margin have a loss value
greater than zero.

October 3, 2024 9 / 47



SVM Loss Function Classification Loss (Hinge Function)

Classification Loss

Requirement for Classification Loss:

Correct classification above the +ve margin has a loss value of zero.

Correct classification below the -ve margin has a loss value of zero.

Misclassified data points above the +ve margin have a loss value
greater than zero.

Misclassified data points below the -ve margin have a loss value
greater than zero.

Correctly classified data points within the margin have a loss value
greater than zero.

October 3, 2024 9 / 47



SVM Loss Function Classification Loss (Hinge Function)

Classification Loss

Requirement for Classification Loss:

Correct classification above the +ve margin has a loss value of zero.

Correct classification below the -ve margin has a loss value of zero.

Misclassified data points above the +ve margin have a loss value
greater than zero.

Misclassified data points below the -ve margin have a loss value
greater than zero.

Correctly classified data points within the margin have a loss value
greater than zero.

October 3, 2024 9 / 47



SVM Loss Function Classification Loss (Hinge Function)

Hinge Loss (Classification Loss)

The Hinge Loss function is defined as:

Lclassification(y , ŷ) = max(0,1 − y ⋅ y ′)

where y is the true label (either +1 or -1) and y ′ is the predicted label.

What is the loss for the blue data point if it is correctly classified?
Which area is the loss in?

October 3, 2024 10 / 47



SVM Loss Function Classification Loss (Hinge Function)

Hinge Loss (Classification Loss)

The Hinge Loss function is defined as:

Lclassification(y , ŷ) = max(0,1 − y ⋅ y ′)

where y is the true label (either +1 or -1) and y ′ is the predicted label.

What is the loss for the blue data point if it is correctly classified?
Which area is the loss in?

October 3, 2024 10 / 47



SVM Loss Function Classification Loss (Hinge Function)

Hinge Loss (Classification Loss)

The Hinge Loss function is defined as:

Lclassification(y , ŷ) = max(0,1 − y ⋅ y ′)

where y is the true label (either +1 or -1) and y ′ is the predicted label.

What is the loss for the blue data point if it is misclassified? Which
area is the loss in?

October 3, 2024 11 / 47



SVM Loss Function Classification Loss (Hinge Function)

Hinge Loss (Classification Loss)

The Hinge Loss function is defined as:

Lclassification(y , ŷ) = max(0,1 − y ⋅ y ′)

where y is the true label (either +1 or -1) and y ′ is the predicted label.

What is the loss for the blue data point if it is misclassified? Which
area is the loss in?

October 3, 2024 11 / 47



SVM Loss Function Classification Loss (Hinge Function)

Hinge Loss

The Hinge Loss function is defined as:

Lclassification(y , ŷ) = max(0,1 − y ⋅ y ′)

where y is the true label (either +1 or -1) and y ′ is the predicted label.

What is the loss for the blue data point if it is correctly classified?
Which area is the loss in?

October 3, 2024 12 / 47



SVM Loss Function Classification Loss (Hinge Function)

Hinge Loss

The Hinge Loss function is defined as:

L(y , ŷ) = max(0,1 − y ⋅ y ′)

where y is the true label (either +1 or -1) and y ′ is the predicted label.

What is the loss for the blue data point if it is misclassified? Which
area is the loss in?

October 3, 2024 13 / 47



SVM Loss Function Classification Loss (Hinge Function)

Hinge Loss

The Hinge Loss function is defined as:

Lclassification(y , y ′) = max(0,1 − y ⋅ y ′)

where y is the true label (either +1 or -1) and y ′ is the predicted label.

What is the loss for the blue data point if it is correctly classified?
Which area is the loss in?

October 3, 2024 14 / 47



SVM Loss Function Classification Loss (Hinge Function)

Hinge Loss

The Hinge Loss function is defined as:

Lclassification(y , y ′) = max(0,1 − y ⋅ y ′)

where y is the true label (either +1 or -1) and y ′ is the predicted label.

What is the loss for the blue data point if it is misclassified? Which
area is the loss in?

October 3, 2024 15 / 47



SVM Loss Function Classification Loss (Hinge Function)

Hinge Loss

The Hinge Loss function is defined as:

Lclassification(y , y ′) = max(0,1 − y ⋅ y ′)

where y is the true label (either +1 or -1) and y ′ is the predicted label.

What is the loss for the blue data point if it is correctly classified?
Which area is the loss in?

October 3, 2024 16 / 47



SVM Loss Function Classification Loss (Hinge Function)

Hinge Loss

The Hinge Loss function is defined as:

Lclassification(y , y ′) = max(0,1 − y ⋅ y ′)

where y is the true label (either +1 or -1) and y ′ is the predicted label.

What is the loss for the blue data point if it is misclassified? Which
area is the loss in?

October 3, 2024 17 / 47



SVM Loss Function Distance Loss Function (Large Margin)

Outline

1 SVM Intro

2 SVM Loss Function
Classification Loss (Hinge Function)
Distance Loss Function (Large Margin)
Overall Loss Function

3 SVM Kernels (Non-linear Boundaries)

4 Non-linear SVM Decision Function

5 Training SVM
Hinge Loss Derivative

October 3, 2024 18 / 47



SVM Loss Function Distance Loss Function (Large Margin)

Distance Loss Function (Large Margin)

What is the distance between two parallel straight lines?

More general form:

2

∣∣w ∣∣ =
2√

w2
1 +w2

2 +w2
3 +⋯ +w2

n

Note:

The larger the weight vector,
the smaller the (margin) Bad
classifier.

The smaller the weight vector,
the larger the (margin) Good
classifier.

There for maximizing the margin is equivalent to minimizing the
weight vector!

October 3, 2024 19 / 47



SVM Loss Function Distance Loss Function (Large Margin)

Distance Loss Function (Large Margin)

What is the distance between two parallel straight lines?

More general form:

2

∣∣w ∣∣ =
2√

w2
1 +w2

2 +w2
3 +⋯ +w2

n

Note:

The larger the weight vector,
the smaller the (margin) Bad
classifier.

The smaller the weight vector,
the larger the (margin) Good
classifier.

There for maximizing the margin is equivalent to minimizing the
weight vector!

October 3, 2024 19 / 47



SVM Loss Function Distance Loss Function (Large Margin)

Distance Loss Function (Large Margin)

What is the distance between two parallel straight lines?

More general form:

2

∣∣w ∣∣ =
2√

w2
1 +w2

2 +w2
3 +⋯ +w2

n

Note:

The larger the weight vector,
the smaller the (margin) Bad
classifier.

The smaller the weight vector,
the larger the (margin) Good
classifier.

There for maximizing the margin is equivalent to minimizing the
weight vector!

October 3, 2024 19 / 47



SVM Loss Function Distance Loss Function (Large Margin)

Distance Loss Function (Large Margin)

October 3, 2024 20 / 47



SVM Loss Function Overall Loss Function

Outline

1 SVM Intro

2 SVM Loss Function
Classification Loss (Hinge Function)
Distance Loss Function (Large Margin)
Overall Loss Function

3 SVM Kernels (Non-linear Boundaries)

4 Non-linear SVM Decision Function

5 Training SVM
Hinge Loss Derivative

October 3, 2024 21 / 47



SVM Loss Function Overall Loss Function

Overall Loss Function

The overall loss function is the sum of the classification loss and the distance
loss:

L(y , y ′) = Lclassification(y , y ′)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Hinge Loss

+ 1

2
∣∣w ∣∣2

´¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
Regularization ≡ Large Margin

L(y , y ′) = max(0,1 − y ⋅ y ′)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Hinge Loss

+ 1

2
∣∣w ∣∣2

´¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
Regularization ≡ Large Margin

October 3, 2024 22 / 47



SVM Loss Function Overall Loss Function

Overall Loss Function

The overall loss function is the sum of the classification loss and the distance
loss:

L(y , y ′) = Lclassification(y , y ′)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Hinge Loss

+ 1

2
∣∣w ∣∣2

´¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
Regularization ≡ Large Margin

L(y , y ′) = max(0,1 − y ⋅ y ′)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Hinge Loss

+ 1

2
∣∣w ∣∣2

´¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
Regularization ≡ Large Margin

October 3, 2024 22 / 47



SVM Loss Function Overall Loss Function

Overall Loss Function

October 3, 2024 23 / 47



SVM Loss Function Overall Loss Function

Overall Loss Function

What is more important, classification loss or distance loss?

October 3, 2024 24 / 47



SVM Loss Function Overall Loss Function

Overall Loss Function (C Parameter)

The parameter C is used to balance the classification loss and the margin
loss.

L(y , y ′) = C ⋅ Lclassification + Lmargin

How C parameter affects overfitting?

Small C: More regularization (lower weight vector) ⇒ Less overfitting.

Large C: Less regularization (higher weight vector) ⇒ More overfitting.

October 3, 2024 25 / 47



SVM Loss Function Overall Loss Function

Overall Loss Function (C Parameter)

The parameter C is used to balance the classification loss and the margin
loss.

L(y , y ′) = C ⋅ Lclassification + Lmargin

How C parameter affects overfitting?

Small C: More regularization (lower weight vector) ⇒ Less overfitting.

Large C: Less regularization (higher weight vector) ⇒ More overfitting.

October 3, 2024 25 / 47



SVM Loss Function Overall Loss Function

Overall Loss Function (C Parameter)

The parameter C is used to balance the classification loss and the margin
loss.

L(y , y ′) = C ⋅ Lclassification + Lmargin

How C parameter affects overfitting?

Small C: More regularization (lower weight vector) ⇒ Less overfitting.

Large C: Less regularization (higher weight vector) ⇒ More overfitting.

October 3, 2024 25 / 47



SVM Loss Function Overall Loss Function

Overall Loss Function (C Parameter)

The parameter C is used to balance the classification loss and the margin
loss.

L(y , y ′) = C ⋅ Lclassification + Lmargin

How C parameter affects overfitting?

Small C: More regularization (lower weight vector) ⇒ Less overfitting.

Large C: Less regularization (higher weight vector) ⇒ More overfitting.

October 3, 2024 25 / 47



SVM Kernels (Non-linear Boundaries)

Outline

1 SVM Intro

2 SVM Loss Function
Classification Loss (Hinge Function)
Distance Loss Function (Large Margin)
Overall Loss Function

3 SVM Kernels (Non-linear Boundaries)

4 Non-linear SVM Decision Function

5 Training SVM
Hinge Loss Derivative

October 3, 2024 26 / 47



SVM Kernels (Non-linear Boundaries)

SVM Kernels

SVM can only classify linearly separable data.

SVM Kernels are used to transform the data into a higher
dimensional space where it becomes linearly separable.

Common Kernels:

Polynomial Kernel
RBF Kernel
Sigmoid Kernel

October 3, 2024 27 / 47



SVM Kernels (Non-linear Boundaries)

From Linear to Non-linear Boundaries

October 3, 2024 28 / 47



SVM Kernels (Non-linear Boundaries)

From Linear to Non-linear Boundaries

October 3, 2024 29 / 47



SVM Kernels (Non-linear Boundaries)

From Linear to Non-linear Boundaries

October 3, 2024 30 / 47



SVM Kernels (Non-linear Boundaries)

From Linear to Non-linear Boundaries

We need a circle with this formula: x21 + x22 = 1

October 3, 2024 31 / 47



SVM Kernels (Non-linear Boundaries)

From Linear to Non-linear Boundaries

We need a circle with this formula: x21 + x22 = 1

October 3, 2024 31 / 47



SVM Kernels (Non-linear Boundaries)

From Linear to Non-linear Boundaries

October 3, 2024 32 / 47



SVM Kernels (Non-linear Boundaries)

From Linear to Non-linear Boundaries

October 3, 2024 33 / 47



SVM Kernels (Non-linear Boundaries)

From Linear to Non-linear Boundaries

We may not have the luxury
to look at a plot and eyeball
an expression that will help
us out.

We consider all the possible
monomials of degree 2:

These are the following
three monomials:

x21 , x22 , x1x2

October 3, 2024 34 / 47



SVM Kernels (Non-linear Boundaries)

Why do we need Kernels? Why not feature cross?

Suppose we have 3D input data (x1, x2, x3):
Feature cross for 2-degree:

Add 6 features: x21 , x
2
2 , x

2
3 , x1x2, x1x3, x2x3

Feature cross for 3-degree:

Add 10 features: x31 , x
3
2 , x

3
3 , x

2
1 x2, x

2
1 x3, x

2
2 x1, x

2
2 x3, x

2
3 x1, x

2
3 x2, x1x2x3

Feature cross grows exponentially with the degree! It needs
alot of memory!

Instead of finding higher degree features from the same sample, we
can find higher degree features between different samples (using
Kernels).

October 3, 2024 35 / 47



SVM Kernels (Non-linear Boundaries)

Why do we need Kernels? Why not feature cross?

Suppose we have 3D input data (x1, x2, x3):
Feature cross for 2-degree:

Add 6 features: x21 , x
2
2 , x

2
3 , x1x2, x1x3, x2x3

Feature cross for 3-degree:

Add 10 features: x31 , x
3
2 , x

3
3 , x

2
1 x2, x

2
1 x3, x

2
2 x1, x

2
2 x3, x

2
3 x1, x

2
3 x2, x1x2x3

Feature cross grows exponentially with the degree! It needs
alot of memory!

Instead of finding higher degree features from the same sample, we
can find higher degree features between different samples (using
Kernels).

October 3, 2024 35 / 47



SVM Kernels (Non-linear Boundaries)

Why do we need Kernels? Why not feature cross?

Suppose we have 3D input data (x1, x2, x3):
Feature cross for 2-degree:

Add 6 features: x21 , x
2
2 , x

2
3 , x1x2, x1x3, x2x3

Feature cross for 3-degree:

Add 10 features: x31 , x
3
2 , x

3
3 , x

2
1 x2, x

2
1 x3, x

2
2 x1, x

2
2 x3, x

2
3 x1, x

2
3 x2, x1x2x3

Feature cross grows exponentially with the degree! It needs
alot of memory!

Instead of finding higher degree features from the same sample, we
can find higher degree features between different samples (using
Kernels).

October 3, 2024 35 / 47



SVM Kernels (Non-linear Boundaries)

Why do we need Kernels? Why not feature cross?

Suppose we have 3D input data (x1, x2, x3):
Feature cross for 2-degree:

Add 6 features: x21 , x
2
2 , x

2
3 , x1x2, x1x3, x2x3

Feature cross for 3-degree:

Add 10 features: x31 , x
3
2 , x

3
3 , x

2
1 x2, x

2
1 x3, x

2
2 x1, x

2
2 x3, x

2
3 x1, x

2
3 x2, x1x2x3

Feature cross grows exponentially with the degree! It needs
alot of memory!

Instead of finding higher degree features from the same sample, we
can find higher degree features between different samples (using
Kernels).

October 3, 2024 35 / 47



SVM Kernels (Non-linear Boundaries)

Why do we need Kernels? Why not feature cross?

Suppose we have 3D input data (x1, x2, x3):
Feature cross for 2-degree:

Add 6 features: x21 , x
2
2 , x

2
3 , x1x2, x1x3, x2x3

Feature cross for 3-degree:

Add 10 features: x31 , x
3
2 , x

3
3 , x

2
1 x2, x

2
1 x3, x

2
2 x1, x

2
2 x3, x

2
3 x1, x

2
3 x2, x1x2x3

Feature cross grows exponentially with the degree! It needs
alot of memory!

Instead of finding higher degree features from the same sample, we
can find higher degree features between different samples (using
Kernels).

October 3, 2024 35 / 47



SVM Kernels (Non-linear Boundaries)

Why do we need Kernels? Why not feature cross?

Suppose we have 3D input data (x1, x2, x3):
Feature cross for 2-degree:

Add 6 features: x21 , x
2
2 , x

2
3 , x1x2, x1x3, x2x3

Feature cross for 3-degree:

Add 10 features: x31 , x
3
2 , x

3
3 , x

2
1 x2, x

2
1 x3, x

2
2 x1, x

2
2 x3, x

2
3 x1, x

2
3 x2, x1x2x3

Feature cross grows exponentially with the degree! It needs
alot of memory!

Instead of finding higher degree features from the same sample, we
can find higher degree features between different samples (using
Kernels).

October 3, 2024 35 / 47



SVM Kernels (Non-linear Boundaries)

Polynomial Kernel

The Polynomial Kernel is defined as:

K(a,b) = (a ⋅ b + c)d

where a and b are the input vectors (data samples), c is the bias, and
d is the degree of the polynomial.

The polynomial kernel is a non-linear
transformation of the input data.

Example (assume 2D input data) a: (a1, a2), b: (b1,b2), c = 1,d = 2:

K(a,b) = (a ⋅ b + 1)2 =

(a1b1 + a2b2 + 1)2 =

(a1b1)2 + (a2b2)2 + 1 + 2a1b1 + 2a2b2 + 2a1b1a2b2

Note: We don’t need to know the explicit form of the transformed
feature space. We can directly compute the kernel function on the
input data on the fly.

October 3, 2024 36 / 47



SVM Kernels (Non-linear Boundaries)

Polynomial Kernel

The Polynomial Kernel is defined as:

K(a,b) = (a ⋅ b + c)d

where a and b are the input vectors (data samples), c is the bias, and
d is the degree of the polynomial. The polynomial kernel is a non-linear
transformation of the input data.

Example (assume 2D input data) a: (a1, a2), b: (b1,b2), c = 1,d = 2:

K(a,b) = (a ⋅ b + 1)2 =

(a1b1 + a2b2 + 1)2 =

(a1b1)2 + (a2b2)2 + 1 + 2a1b1 + 2a2b2 + 2a1b1a2b2

Note: We don’t need to know the explicit form of the transformed
feature space. We can directly compute the kernel function on the
input data on the fly.

October 3, 2024 36 / 47



SVM Kernels (Non-linear Boundaries)

Polynomial Kernel

The Polynomial Kernel is defined as:

K(a,b) = (a ⋅ b + c)d

where a and b are the input vectors (data samples), c is the bias, and
d is the degree of the polynomial. The polynomial kernel is a non-linear
transformation of the input data.

Example (assume 2D input data) a: (a1, a2), b: (b1,b2), c = 1,d = 2:
K(a,b) = (a ⋅ b + 1)2 =

(a1b1 + a2b2 + 1)2 =

(a1b1)2 + (a2b2)2 + 1 + 2a1b1 + 2a2b2 + 2a1b1a2b2

Note: We don’t need to know the explicit form of the transformed
feature space. We can directly compute the kernel function on the
input data on the fly.

October 3, 2024 36 / 47



SVM Kernels (Non-linear Boundaries)

Polynomial Kernel

The Polynomial Kernel is defined as:

K(a,b) = (a ⋅ b + c)d

where a and b are the input vectors (data samples), c is the bias, and
d is the degree of the polynomial. The polynomial kernel is a non-linear
transformation of the input data.

Example (assume 2D input data) a: (a1, a2), b: (b1,b2), c = 1,d = 2:
K(a,b) = (a ⋅ b + 1)2 =

(a1b1 + a2b2 + 1)2 =

(a1b1)2 + (a2b2)2 + 1 + 2a1b1 + 2a2b2 + 2a1b1a2b2

Note: We don’t need to know the explicit form of the transformed
feature space. We can directly compute the kernel function on the
input data on the fly.

October 3, 2024 36 / 47



SVM Kernels (Non-linear Boundaries)

Polynomial Kernel

The Polynomial Kernel is defined as:

K(a,b) = (a ⋅ b + c)d

where a and b are the input vectors (data samples), c is the bias, and
d is the degree of the polynomial. The polynomial kernel is a non-linear
transformation of the input data.

Example (assume 2D input data) a: (a1, a2), b: (b1,b2), c = 1,d = 2:
K(a,b) = (a ⋅ b + 1)2 =

(a1b1 + a2b2 + 1)2 =

(a1b1)2 + (a2b2)2 + 1 + 2a1b1 + 2a2b2 + 2a1b1a2b2

Note: We don’t need to know the explicit form of the transformed
feature space. We can directly compute the kernel function on the
input data on the fly.

October 3, 2024 36 / 47



SVM Kernels (Non-linear Boundaries)

Polynomial Kernel

The Polynomial Kernel is defined as:

K(a,b) = (a ⋅ b + c)d

where a and b are the input vectors (data samples), c is the bias, and
d is the degree of the polynomial. The polynomial kernel is a non-linear
transformation of the input data.

Example (assume 2D input data) a: (a1, a2), b: (b1,b2), c = 1,d = 2:
K(a,b) = (a ⋅ b + 1)2 =

(a1b1 + a2b2 + 1)2 =

(a1b1)2 + (a2b2)2 + 1 + 2a1b1 + 2a2b2 + 2a1b1a2b2

Note: We don’t need to know the explicit form of the transformed
feature space. We can directly compute the kernel function on the
input data on the fly.

October 3, 2024 36 / 47



SVM Kernels (Non-linear Boundaries)

Polynomial Kernel

The Polynomial Kernel is defined as:

K(a,b) = (a ⋅ b + c)d

where a and b are the input vectors (data samples), c is the bias, and
d is the degree of the polynomial. The polynomial kernel is a non-linear
transformation of the input data.

Example (assume 2D input data) a: (a1, a2), b: (b1,b2), c = 1,d = 2:
K(a,b) = (a ⋅ b + 1)2 =

(a1b1 + a2b2 + 1)2 =

(a1b1)2 + (a2b2)2 + 1 + 2a1b1 + 2a2b2 + 2a1b1a2b2

Note: We don’t need to know the explicit form of the transformed
feature space. We can directly compute the kernel function on the
input data on the fly.

October 3, 2024 36 / 47



Non-linear SVM Decision Function

Outline

1 SVM Intro

2 SVM Loss Function
Classification Loss (Hinge Function)
Distance Loss Function (Large Margin)
Overall Loss Function

3 SVM Kernels (Non-linear Boundaries)

4 Non-linear SVM Decision Function

5 Training SVM
Hinge Loss Derivative

October 3, 2024 37 / 47



Non-linear SVM Decision Function

Non-linear SVM Decision Function

The decision function for non-linear SVM is:

y ′ = f (x) = sign(
N

∑
i=1

wiy
(i)K(x(i), x) + b)

where K(x(i), x) is the kernel function.

y ′ is the predicted label.

wi are the weights we learn from the training data.

b is the bias.

We can think of the kernel as a similarity measure between the
input data and all the training samples. The higher the similarity, the
higher the dot product kernel value.

October 3, 2024 38 / 47



Non-linear SVM Decision Function

Non-linear SVM Decision Function

The decision function for non-linear SVM is:

y ′ = f (x) = sign(
N

∑
i=1

wiy
(i)K(x(i), x) + b)

where K(x(i), x) is the kernel function.

y ′ is the predicted label.

wi are the weights we learn from the training data.

b is the bias.

We can think of the kernel as a similarity measure between the
input data and all the training samples. The higher the similarity, the
higher the dot product kernel value.

October 3, 2024 38 / 47



Non-linear SVM Decision Function

Non-linear SVM Decision Function

The decision function for non-linear SVM is:

y ′ = f (x) = sign(
N

∑
i=1

wiy
(i)K(x(i), x) + b)

where K(x(i), x) is the kernel function.

y ′ is the predicted label.

wi are the weights we learn from the training data.

b is the bias.

We can think of the kernel as a similarity measure between the
input data and all the training samples. The higher the similarity, the
higher the dot product kernel value.

October 3, 2024 38 / 47



Non-linear SVM Decision Function

Non-linear SVM Decision Function

The decision function for non-linear SVM is:

y ′ = f (x) = sign(
N

∑
i=1

wiy
(i)K(x(i), x) + b)

where K(x(i), x) is the kernel function.

y ′ is the predicted label.

wi are the weights we learn from the training data.

b is the bias.

We can think of the kernel as a similarity measure between the
input data and all the training samples. The higher the similarity, the
higher the dot product kernel value.

October 3, 2024 38 / 47



Non-linear SVM Decision Function

Non-linear SVM Decision Function

The decision function for non-linear SVM is:

y ′ = f (x) = sign(
N

∑
i=1

wiy
(i)K(x(i), x) + b)

where K(x(i), x) is the kernel function.

Accumulating more +ve similarity than -ve similarity will push the
decision function towards +ve label.

Accumulating more -ve similarity than +ve similarity will push the
decision function towards -ve label.

Cons: The weight vector length is proportional to the training
samples.

October 3, 2024 39 / 47



Non-linear SVM Decision Function

Non-linear SVM Decision Function

The decision function for non-linear SVM is:

y ′ = f (x) = sign(
N

∑
i=1

wiy
(i)K(x(i), x) + b)

where K(x(i), x) is the kernel function.

Accumulating more +ve similarity than -ve similarity will push the
decision function towards +ve label.

Accumulating more -ve similarity than +ve similarity will push the
decision function towards -ve label.

Cons: The weight vector length is proportional to the training
samples.

October 3, 2024 39 / 47



Non-linear SVM Decision Function

Non-linear SVM Decision Function

The decision function for non-linear SVM is:

y ′ = f (x) = sign(
N

∑
i=1

wiy
(i)K(x(i), x) + b)

where K(x(i), x) is the kernel function.

Accumulating more +ve similarity than -ve similarity will push the
decision function towards +ve label.

Accumulating more -ve similarity than +ve similarity will push the
decision function towards -ve label.

Cons: The weight vector length is proportional to the training
samples.

October 3, 2024 39 / 47



Non-linear SVM Decision Function

Advantages of Kernels

We don’t need to know the explicit form of the transformed feature
space.

We can compute the kernel function on the input data on the fly.

We can use different kernels for different data.

October 3, 2024 40 / 47



Non-linear SVM Decision Function

Advantages of Kernels

We don’t need to know the explicit form of the transformed feature
space.

We can compute the kernel function on the input data on the fly.

We can use different kernels for different data.

October 3, 2024 40 / 47



Non-linear SVM Decision Function

Advantages of Kernels

We don’t need to know the explicit form of the transformed feature
space.

We can compute the kernel function on the input data on the fly.

We can use different kernels for different data.

October 3, 2024 40 / 47



Training SVM

Outline

1 SVM Intro

2 SVM Loss Function
Classification Loss (Hinge Function)
Distance Loss Function (Large Margin)
Overall Loss Function

3 SVM Kernels (Non-linear Boundaries)

4 Non-linear SVM Decision Function

5 Training SVM
Hinge Loss Derivative

October 3, 2024 41 / 47



Training SVM Hinge Loss Derivative

Outline

1 SVM Intro

2 SVM Loss Function
Classification Loss (Hinge Function)
Distance Loss Function (Large Margin)
Overall Loss Function

3 SVM Kernels (Non-linear Boundaries)

4 Non-linear SVM Decision Function

5 Training SVM
Hinge Loss Derivative

October 3, 2024 42 / 47



Training SVM Hinge Loss Derivative

Hinge Loss Function and Its Derivative

Hinge Loss Function

The hinge loss function for binary classification is defined as:

L(y , y ′) = max(0,1 − y ⋅ y ′)

where y ∈ {−1,+1} is the true label and y ′ is the predicted score.

The derivative of the hinge loss with respect to y ′ is:

∂L

∂wi
=
⎧⎪⎪⎨⎪⎪⎩

0, if (1 − y ⋅ y ′ < 0) ≡ (y ⋅ y ′ > 1)
−y ⋅ dy

′

dwi
, if (1 − y ⋅ y ′ > 0) ≡ (y ⋅ y ′ < 1)

Or more concisely:

∂L

∂wi
= −y ⋅ dy

′

dwi
if (y ⋅ y ′ < 1)

October 3, 2024 43 / 47



Training SVM Hinge Loss Derivative

Hinge Loss Function and Its Derivative

∂L

∂wi
= −y ⋅ dy

′

dwi
if (y ⋅ y ′ < 1)

Remember:

y ′ = sign(
N

∑
i=1

wiy
(i)K(x(i), x) +w0)

Thus,

dy ′

dwi
=
⎧⎪⎪⎨⎪⎪⎩

y (i)K(x(i), x), for i = 1, . . . ,N
1, for i = 0 (bias term)

October 3, 2024 44 / 47



Training SVM Hinge Loss Derivative

Hinge Loss Function and Its Derivative

∂L

∂wi
= −y ⋅ dy

′

dwi
if (y ⋅ y ′ < 1)

Remember:

y ′ = sign(
N

∑
i=1

wiy
(i)K(x(i), x) +w0)

Thus,

dy ′

dwi
=
⎧⎪⎪⎨⎪⎪⎩

y (i)K(x(i), x), for i = 1, . . . ,N
1, for i = 0 (bias term)

October 3, 2024 44 / 47



Training SVM Hinge Loss Derivative

SVM Classifier [Training with SGD]

Pick random weights w1,w2, . . . ,wN and a random bias w0.

Repeat many times:
1 Pick a random data point (x(i), y (i)) where y (i) ∈ {−1,+1}.
2 Compute Model Prediction:

y ′(i) =
N

∑
j=1

wjy
(j)K(x(j), x(i)) +w0

3 Update the weights and bias if margin is violated:

If (y (i) ⋅ y ′(i) < 1) ∶
wj = wj + ηy (i)y (j)K(x(j), x(i)) − ηλwj for j = 1, . . . ,N
w0 = w0 + ηy (i)

where η is the learning rate.

Return the model you’ve obtained.

October 3, 2024 45 / 47



Training SVM Hinge Loss Derivative

SVM Classifier [Results]

October 3, 2024 46 / 47



Training SVM Hinge Loss Derivative

Questions

October 3, 2024 47 / 47


	SVM Intro
	SVM Loss Function
	Classification Loss (Hinge Function)
	Distance Loss Function (Large Margin)
	Overall Loss Function

	SVM Kernels (Non-linear Boundaries)
	Non-linear SVM Decision Function
	Training SVM
	Hinge Loss Derivative


