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Polynomial Regression

Polynomial Regression

Examples of polynomials:

o y= 4 . . \ / /v
@ y=3x+2 ,. . i \S : //\'
degree 0 degree 1 degree 2 degree 3

= = —y2 .0y - =3 2 Ay
° y=2x3+8x2—40 y=4 y=3x+4 y=x2-2x-3 y=x3+2x% -4x -1

o y=x>-2x+5
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Polynomial Regression

Examples of polynomials:

o y=4 : - v
 a— 4 : /\/
@ y=3x+2 ; ; v : /
@ y=x 2x+5 degree 0 degree 1 degree 2 degree 3
= fat 2oy =3 2 4y .
o y=2x3+8x%-40 ) S Sl il

Note: What degree of polynomial needed?
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Polynomial Regression

From Linear to non-Linear (Feature Crosses)

@ Our basic equation for linear regression with one feature is:

y’ =Wwix1 + W
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From Linear to non-Linear (Feature Crosses)

@ Our basic equation for linear regression with one feature is:
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@ To fit a quadratic relationship, we can use:
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@ This technique of adding polynomial terms is called feature crosses.
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Polynomial Regression

From Linear to non-Linear (Feature Crosses)

Our basic equation for linear regression with one feature is:

y’ =Wwix1 + W

To fit a quadratic relationship, we can use:

y’ = WQXE + wiXx1 + W

This technique of adding polynomial terms is called feature crosses.

By adding higher-degree terms, we can increase the model complexity:

y' = waxy + W,,_lefl e WX+ W
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Polynomial Regression

From Linear to non-Linear (Feature Crosses)

Our basic equation for linear regression with one feature is:

y' =Wwix1 + W

To fit a quadratic relationship, we can use:

y’ = WQXE + wiXx1 + W

This technique of adding polynomial terms is called feature crosses.

By adding higher-degree terms, we can increase the model complexity:

y' = waxy + W,,_lefl e WX+ W

The degree of the polynomial determines the flexibility of the model.
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Polynomial Regression

Feature Crosses Example

x y
3.4442185152 6.6859613110
504816 21467

- 4.6902362255
2.4108324970 97948

703663

0.1127472136 12.205789026
8608542 637378

- 11133217991
1.9668727392 032268
107255
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Polynomial Regression

Feature Crosses Example

x vy xr2 X3 xra
3.4442185152 66859613110 | 11.8626411807 4085752839466 | 140.7222557842
504816 21467 94233 433 7518

- 46902362255 | 581211332893 | - 33.78066134833
2.4108324970 97948 0538 1401203169004 | 202

703663 1567

0.1127472136 12205789026 | 0.01271193419 0.001433235160 | 0.000161593270
8608542 637378 3975809 9316464 95197139

- 11133217991 | 3.86858837225 | - 14.96597599391
19668727392 032268 03025 7.609021008606 | 0245

107255 714

.
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Polynomial Regression

Feature Crosses Example

x y X2
3. 10 | 114

504816 21467 94233

- 46902362255 | 5.81211332893
24108324970 | 97948 0538

703663

01127472136 | 12205789026 | 0.01271193419
8608542 637378 3975809

- 11133217991 | 3.86858837225
19668727392 | 032268 03025

107255

.
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D
e
L
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Polynomial Regression

Feature Crosses Example

x y X2
3.4442185152 66859613110 | 118626411807
504816 21467 94233

- 46902362255 | 581211332893
24108324970 97948 0538

703663

01127472136 12205789026 | 0.01271193419
8608542 637378 3975809

- 11133217991 | 3.86858837225
19668727392 032268 03025

107255
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Underfitting and Overfitting
Outline

© Underfitting and Overfitting
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Underfitting and Overfitting problems

Which polynomial degree is suitable for this data? In the previous example,
we saw that the model with d = 2 is a good fit for the data.

How do machines know that?!!
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Overfitting and Underfitting

Regression

Classification

@ Wait, how can model 2 have a larger error than model 3, yet still be
better for our data?!
@ How we supposed to figure out if our model is overfitting or

underfitting?
] September 25, 2024 14 /49



Overfitting and Underfitting

Note

A good model (best fit) should be able to generalize to new (unseen)
data. How?

o Over-fitting:
o Model too complex (flexible)
e Fits “noise” in the training data
o High error is expected on the test data.
o Under-fitting:
o Model too simplistic (too rigid)
e Not powerful enough to capture salient patterns in training data and
test data.
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Catching Overfitting/Underfitting Test Data Solution

@ We divide the data into 2

sets: Madel 1 Model 2 Model 3
(degree 1) (degree 2) (degree 10)

e Training set
o Testing set g

error
@ We can know if there is
underfit or overfit problem
from train and test errors fhecs

@ We can tune our
hyper-parameters based on
that
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Catching Overfitting/Underfitting Test Data Solution

@ We divide the data into 2

sets: ey | ey | e
e Training set r
. A
o Testing set i JJ[T
@ We can know if there is High
underfit or overfit problem
. Testing
from train and test errors error
@ We can tune our

hyper-parameters based on
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Catching Overfitting/Underfitting Test Data Solution

@ We divide the data into 2

sets: Model 1 Model 2 Model 3
(degree 1) (degree 2) (degree 10)
° Tralr_nng set - Rk rl o
o Testing set e IL | 1T [”/i A\\L
o We can know if there is o .

underfit or overfit problem T
from train and test errors fpss s j/ T

@ We can tune our
hyper-parameters based on
that

High
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Underfitting and Overfitting

Catching Overfitting/Underfitting Test Data Solution

@ We divide the data into 2

sets: (dogres 1 dogren 2 (dogioe 10)
e Training set 4 A
o Testing set Traning fo IJ/LI f/ \\l
@ We can know if there is High Low
underfit or overfit problem . A
from train and test errors = T/T” g /f \"\.
@ We can tune our High | Low \

hyper-parameters based on
that
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Catching Overfitting/Underfitting Test Data Solution

@ We divide the data into 2

Sets Model 1 Model 2 Model 3
(degree 1) (degree 2) (degree 10)
. . N I ”\‘
° Tralr_nng set ' AI ;v‘/lA\\ N M‘ /ﬁ i
o Testing set -y Ll - '] i ‘\l HI | ’HH
. . ‘// 4 \ UYL
@ We can know if there is - e ko
underfit or overfit problem . .
. Testing i ]\ — £
from train and test errors posi: L =7 | ./ A
= . / 3
@ We can tune our High Low
hyper-parameters based on
that
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Underfitting and Overfitting

Catching Overfitting/Underfitting Test Data Solution

@ We divide the data into 2

sets Model 1 Model 2 Model 3
(degree 1) (degree 2) (degree 10)
e Training set » Ny
o Testin gset T g Al JA[ Iyl \'\k ‘ﬂ W‘ ‘(\‘
g error L /"] \\L f’ ‘\/\\\1\7
e |
@ We can know if there is A Low NVelon
underfit or overfit problem ]\ yf& i "\ (‘, ,,\
. in 4 > g \ | [
from train and test errors et ‘L =T LA mlw\f
= R A
AT RV
@ We can tune our High Low High
hyper-parameters based on
that
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Underfitting and Overfitting

Catching Overfitting/Underfitting Test Data Solution

@ We divide the data into 2

sets Model 1 Model 2 Model 3
(degree 1) (degree 2) (degree 10)
e Training set " » Ny
g e s J[ f L fl il
o Testing set aining Ll [’ r] / k‘ | w \\ M
: . g ’ POV
@ We can know if there is A Low b o
underfit or overfit problem . e N "\ I
. Testing 4 j o ﬁ/ \\ | l\ ’T I
from train and test errors pe i v | w ‘\1\
i / vl DU
, \ AN
@ We can tune our High Low " high
hyper-parameters based on
that

Best Model: Lowest error on the test data
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Simple Holdout Cross Validation
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© Simple Holdout Cross Validation
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Simple Holdout Cross Validation

Can we still overfit while using the test data?

@ Yes, we can still overfit even when using test data

e Ty



Simple Holdout Cross Validation

Can we still overfit while using the test data?
@ Yes, we can still overfit even when using test data

@ This happens when we use the test set too many times to tune

hyperparameters of our model (e.g., degree of polynomial, learning
rate, training epochs, etc.)
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Simple Holdout Cross Validation

Can we still overfit while using the test data?
@ Yes, we can still overfit even when using test data

@ This happens when we use the test set too many times to tune
hyperparameters of our model (e.g., degree of polynomial, learning
rate, training epochs, etc.)

@ The test set becomes part of the training process We lose the ability
to generalize

@ Solution: Use a validation set
o Train set: Used to train the model

e T ey



Simple Holdout Cross Validation

Can we still overfit while using the test data?
@ Yes, we can still overfit even when using test data

@ This happens when we use the test set too many times to tune
hyperparameters of our model (e.g., degree of polynomial, learning
rate, training epochs, etc.)

@ The test set becomes part of the training process We lose the ability
to generalize

@ Solution: Use a validation set

e Train set: Used to train the model
o Validation set: Used to tune hyperparameters

e T ey



Simple Holdout Cross Validation
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Simple Holdout Cross Validation

Can we still overfit while using the test data?
@ Yes, we can still overfit even when using test data

@ This happens when we use the test set too many times to tune
hyperparameters of our model (e.g., degree of polynomial, learning
rate, training epochs, etc.)

@ The test set becomes part of the training process We lose the ability
to generalize

@ Solution: Use a validation set

e Train set: Used to train the model
o Validation set: Used to tune hyperparameters
o Test set: Used once only for final evaluation

@ This three-way split helps prevent overfitting on the test data

e e ey



Outline

@ K-Cross Validation

e Ty



K-Cross Validation

Why?
@ We can be exposed to the test set only once.

@ We need to estimate future error as accurately as possible.

Train
Ex.

Train Validate Train

@ Randomly split the training

into k sets. Train Train

@ Validate on one in each turn UL Ul

(train on 4 others)

@ Average the results over 5 folds = = = = o e e e e
5-fold cross validation

B T



K-Cross Validation

Underfitting and Overfitting problems [ The Validation

set solution |

Training

Validation

10% -> 20%

e This is called Simple (Holdout) Cross Validation

@ Note: We can use more sophisticated cross-validation techniques for

better model evaluation.

September 25, 2024
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Model Complexity

@ As we increase the degree of the
polynomial, the model becomes
more complex.

. ’o o
@ A complex model can fit the ’- Best inodel :

- . )
training data very well, but it l ‘
®
-

Error

. N J @ .
may not generalize well to new,

unseen data. »>-

.. T e 0‘-7-‘,._‘
@ This is where the concept of L% s s s

. K Model Complexity(degree of the polynomial)
model complexity comes into
play.
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Early Stopping
Outline

@ Polynomial Regression

© Underfitting and Overfitting

© Simple Holdout Cross Validation
@ K-Cross Validation

© Model Complexity
e Early Stopping

© Regularization

@ Variance-Bias Tradeoff
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Early Stopping
Solving overfitting /underfitting problem [Early Stopping]

o Early stopping is a technique to

prevent overfitting
@ Monitor the model’s * g
. . . [ ]
performance on a validation set ‘. :
i L. Best model .»
during training l
S =
° Tra.mm.g is stopped when. the 5 E
validation error starts to increase T
0 B aih 3

1 2 8 9 1«,

@ This helps find the optimal
point between underfitting and
overfitting

Model Complexity(degree of the polynomial)

e Ty



Model Complexity Understanding Validation Error
Outline

@ Polynomial Regression

© Underfitting and Overfitting

© Simple Holdout Cross Validation
@ K-Cross Validation

© Model Complexity

@ Understanding Validation Error
© Regularization

@ Variance-Bias Tradeoff
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Understanding Valdation Error
Understanding Validation Error

@ Why is validation error usually larger than training error?
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Understanding Valdation Error
Understanding Validation Error

@ Why is validation error usually larger than training error?
e The model is optimized on the training data
e Validation data is unseen, so performance is typically worse
e This difference helps assess the model's generalization ability

@ Should we always pick the model with the least validation
error?
e Not necessarily - consider the following:
o Balance between performance and complexity
o Practical considerations (e.g., computational resources)
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Understanding Valdation Error
Understanding Validation Error

@ Why is validation error usually larger than training error?
e The model is optimized on the training data
e Validation data is unseen, so performance is typically worse
e This difference helps assess the model's generalization ability

@ Should we always pick the model with the least validation
error?
e Not necessarily - consider the following:
o Balance between performance and complexity
o Practical considerations (e.g., computational resources)
e Sometimes a simpler model with slightly higher error is preferable

] September 25, 2024 34 /49



Outline

© Regularization

e e A o 0/



Solving overfitting/underfitting problem [Regularization]

Higher coefficient values (weights) = Higher complexity

Multiple regression example:

y=wy+ wixt + wox? + wax3 4+ wx"

o Larger w; values indicate more complex model

Regularization aims to keep these coefficients small

This helps prevent overfitting by reducing model complexity

e ey



Regularization: Example (L1 and L2)

@ L1 Regularization (Lasso) - Encourages sparsity (encourages some

weights to be zero):

LW)= (y'=y)? +  AX|w
—_—— —
Old Loss term L1 regularization term

@ L2 Regularization (Ridge) - Shrinks coefficients:
LW)= (y'-y)* +  AZw}

—_——— —_——
Old Loss term L2 regularization term

o Note: A is a hyperparameter that controls the strength of
regularization

37/49



Regularization

Regularization: Numeric Examples

@ Consider the following models:
o Model 1: y =2x
o Model 2: y=x+6
o Model 3: y = x +4x% +9x3 + 3x* + 14x5 + 2x% + 9x" + x® + 6x°

@ L1 Norm (sum of absolute values of coefficients):
o Model 1: |2|=2
o Model 2: |1|+]6]=7
o Model 3: |1| + 4| +19] +|3| + 14| + |2| + 9] + 1] + |6] = 49

@ L2 Norm (square root of sum of squared coefficients):
o Model 1: 22=4
o Model 2: 12 +62 = 37
o Model 3: 12+4%+92+32+142+22+09%+12+6% =425

B Ty



Regularization: How sparsity and shrinkage?

o L1 regularization gradient:

oL 0
- - ()/ —»_y)2 + A 2{:|mq|
8W,' 6W,' (R —

L2 Error L1 regularization
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Regularization: How sparsity and shrinkage?
o L1 regularization gradient:
oL 0

=—— O/ =)+ AY|wi

L2 Error L1 regularization

New Update Rule = w;=w;—n-[2x(y - y) + \-sign(w;)]
—_———

Constant term
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Regularization: How sparsity and shrinkage?

o L1 regularization gradient:

oL 0

- - (y’—y)2+ )\Z|W,'|

8W,' aW,' (R —_——
L2 Error L1 regularization

New Update Rule = w;=w;-7n-[2x(y' —y) + \-sign(w;)]
@ L2 regularization gradient: —_

Constant term

8[_ 8 2 2
—— =/ -y)+ )‘ZWI
8W,' 8W,' N—— N——

L2 Error L2 regularization
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Regularization: How sparsity and shrinkage?

o L1 regularization gradient:

oL 0

- - (y’—y)2+ )\Z|W,'|

8W,' aW,' (R —_——
L2 Error L1 regularization

New Update Rule = w;=w;-7n-[2x(y' —y) + \-sign(w;)]
@ L2 regularization gradient: —_

Constant term

8[_ 8 2 2
—— =/ -y)+ )‘ZWI
8W,' 8W,' N—— N——

L2 Error L2 regularization

New Update Rule = w;=w;-7n-[2x(y' -y)+ 22w ]
——

Ratio of weight to its value

e Ty



Regularization

Regularization: How sparsity and shrinkage?

@ L1: The constant A-sign(w;) term pushes small weights to exactly
zero (sparsity)

o L2: The 2A\w; term shrinks weights proportionally to their
magnitude (shrinkage)

L1-regularization L2-regularization

] September 25, 2024 4049
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@ Variance-Bias Tradeoff
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Variance-Bias Tradeoff

@ Variance: How much the
model’s predictions vary with
different type of data.

e Overfit model: High Variance
model

e Bias: How much the model’s
predictions deviate from the true

value.
e Underfit model: High Bias
model
o Tradeoff: Lower bias often
results in higher variance, and
vice versa.

model complexity

September 25, 2024
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Low Variance and High Bias

@ Characteristics:
e Underfits the data o
e Poor performance on both .'

training and test sets
o Example: Linear model for
complex, non-linear data
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Variance-Bias Tradeoff

High Variance and Low Bias

@ Characteristics:

o Overfits the data

o Excellent performance on
training set, poor on test set

e Sensitive to small fluctuations
in the training data

o Example: High-degree
polynomial for simple, nearly
linear data
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Variance-Bias Tradeoff

High Variance and High Bias

o Characteristics:
e Poor performance on both
training and test sets
e Example: Linear model for
complex, non-linear data

September 25, 2024
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Variance-Bias Tradeoff

Low Variance and Low Bias

o Characteristics:

e Good performance on both
training and test sets

o Balances between underfitting
and overfitting

o Generalizes well to new,
unseen data

o Example: Appropriate
complexity model for the
given data

September 25, 2024
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Variance-Bias Tradeoff

Factors Affecting Bias and Variance

Factors contributing to high bias:
o Model simplicity
o Insufficient features
@ Incorrect assumptions
o

Limited training data

Factors contributing to high variance:
@ Model complexity
@ Too many features
@ Small training set
°

High sensitivity to training data

] September 25, 2024 47 /49



Variance-Bias Tradeoff

Exercise

We have trained four models in the same dataset with different hyperpa-
rameters. In the following table, we have recorded the training and testing
errors for each of the models.

Model | Training Error | Testing Error
1 0.1 1.8
2 0.4 1.2
3 0.6 0.8
4 1.9 2.3

Questions:
(a) Which model would you select for this dataset?
(b) Which model looks like it's underfitting the data?
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Variance-Bias Tradeoff

Questions ?

C
Yhank
y o)
C
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