ECEN 377: Engineering Applications of AI

Dr. Mahmoud Nabil Mahmoud mnmahmoud@ncat.edu

North Carolina A & T State University

September 25, 2024

September 25, 2024

1/49

Outline

Polynomial Regression

- 2 Underfitting and Overfitting
- 3 Simple Holdout Cross Validation
- 4 K-Cross Validation
- 5 Model Complexity
 - Early Stopping
 - Understanding Validation Error
- 6 Regularization
- 🕖 Variance-Bias Tradeoff

э

イロト イポト イヨト イヨト

September 25, 2024 3 / 49

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

September 25, 2024 5 / 49

3

イロン イ理 とく ヨン イ ヨン

Examples of polynomials:

Image: A matrix

A B b A B b

September 25, 2024

э

6/49

Examples of polynomials:

• Our basic equation for linear regression with one feature is:

$$y' = w_1 x_1 + w_0$$

3

イロト 不得 トイヨト イヨト

• Our basic equation for linear regression with one feature is:

$$y' = w_1 x_1 + w_0$$

• To fit a quadratic relationship, we can use:

$$y' = w_2 x_1^2 + w_1 x_1 + w_0$$

• Our basic equation for linear regression with one feature is:

$$y' = w_1 x_1 + w_0$$

• To fit a quadratic relationship, we can use:

$$y' = w_2 x_1^2 + w_1 x_1 + w_0$$

• This technique of adding polynomial terms is called feature crosses.

• Our basic equation for linear regression with one feature is:

$$y' = w_1 x_1 + w_0$$

• To fit a quadratic relationship, we can use:

$$y' = w_2 x_1^2 + w_1 x_1 + w_0$$

- This technique of adding polynomial terms is called feature crosses.
- By adding higher-degree terms, we can increase the model complexity:

$$y' = w_n x_1^n + w_{n-1} x_1^{n-1} + \dots + w_1 x_1 + w_0$$

• Our basic equation for linear regression with one feature is:

$$y' = w_1 x_1 + w_0$$

• To fit a quadratic relationship, we can use:

$$y' = w_2 x_1^2 + w_1 x_1 + w_0$$

- This technique of adding polynomial terms is called feature crosses.
- By adding higher-degree terms, we can increase the model complexity:

$$y' = w_n x_1^n + w_{n-1} x_1^{n-1} + \dots + w_1 x_1 + w_0$$

• The degree of the polynomial determines the flexibility of the model.

x	у
3.4442185152 504816	6.6859613110 21467
- 2.4108324970 703663	4.6902362255 97948
0.1127472136 8608542	12.205789026 637378
- 1.9668727392 107255	11.133217991 032268

Image: A matrix

x	у	x^2	x^3	x^4
3.4442185152 504816	6.6859613110 21467	11.8626411807 94233	40.85752839466 433	140.7222557842 7518
2.4108324970 703663	4.6902362255 97948	5.81211332893 0538	14.01203169004 1567	33.78066134833 202
0.1127472136 8608542	12.205789026 637378	0.01271193419 3975809	0.001433235160 9316464	0.000161593270 95197139
1.9668727392 107255	11.133217991 032268	3.86858837225 03025	- 7.609021008606 714	14.96597599391 0245

Image: A matrix

x	y.	x^2	x^3	x^4
3.4442185152 504816	6.6859613110 21467	11.8626411807 94233	40.85752839466 433	140.7222557842 7518
2.4108324970 703663	4.6902362255 97948	5.81211332893 0538	14.01203169004 1567	33.78066134833 202
0.1127472136 8608542	12.205789026 637378	0.01271193419 3975809	0.001433235160 9316464	0.000161593270 95197139
1.9668727392 107255	11.133217991 032268	3.86858837225 03025	- 7.609021008606 714	14.96597599391 0245

Image: A matrix

x	У	x^2	x^3	x*4
3.4442185152 504816	6.6859613110 21467	11.8626411807 94233	40.85752839466 433	140.7222557842 7518
2.4108324970 703663	4.6902362255 97948	5.81211332893 0538	14.01203169004 1567	33.78066134833 202
0.1127472136 8608542	12.205789026 637378	0.01271193419 3975809	0.001433235160 9316464	0.000161593270 95197139
1.9668727392 107255	11.133217991 032268	3.86858837225 03025	- 7.609021008606 714	14.96597599391 0245
	1	1		

イロト イヨト イヨト イヨト

Outline

2 Underfitting and Overfitting

Simple Holdout Cross Validation

4 K-Cross Validation

5 Model Complexity

- Early Stopping
- Understanding Validation Error
- 6 Regularization
- 7 Variance-Bias Tradeoff

э

イロト イポト イヨト イヨト

Underfitting and Overfitting problems

Which polynomial degree is suitable for this data? In the previous example,

we saw that the model with d = 2 is a good fit for the data.

How do machines know that?!!

Overfitting and Underfitting

Classification

- Wait, how can model 2 have a larger error than model 3, yet still be better for our data?!
- How we supposed to figure out if our model is overfitting or underfitting?

Overfitting and Underfitting

Note

A good model (best fit) should be able to generalize to new (unseen) data. How?

• Over-fitting:

- Model too complex (flexible)
- Fits "noise" in the training data
- High error is expected on the test data.

• Under-fitting:

- Model too simplistic (too rigid)
- Not powerful enough to capture salient patterns in training data and test data.

September 25, 2024

15/49

- We divide the data into 2 sets:
 - Training set
 - Testing set
- We can know if there is underfit or overfit problem from train and test errors
- We can tune our hyper-parameters based on that

	Model 1 (degree 1)	Model 2 (degree 2)	Model 3 (degree 10)
Training error			
Testing error			

→ < ∃ →</p>

- We divide the data into 2 sets:
 - Training set
 - Testing set
- We can know if there is underfit or overfit problem from train and test errors
- We can tune our hyper-parameters based on that

	Model 1 (degree 1)	Model 2 (degree 2)	Model 3 (degree 10)
Training error			
	High		
Testing error			

September 25, 2024 17 / 49

→ < ∃ →</p>

- We divide the data into 2 sets:
 - Training set
 - Testing set
- We can know if there is underfit or overfit problem from train and test errors
- We can tune our hyper-parameters based on that

A B A A B A

18 / 49

September 25, 2024

- We divide the data into 2 sets:
 - Training set
 - Testing set
- We can know if there is underfit or overfit problem from train and test errors
- We can tune our hyper-parameters based on that

A B A A B A

- We divide the data into 2 sets:
 - Training set
 - Testing set
- We can know if there is underfit or overfit problem from train and test errors
- We can tune our hyper-parameters based on that

- ∢ 🗗 ▶

A B A A B A

- We divide the data into 2 sets:
 - Training set
 - Testing set
- We can know if there is underfit or overfit problem from train and test errors
- We can tune our hyper-parameters based on that

< A

- We divide the data into 2 sets:
 - Training set
 - Testing set
- We can know if there is underfit or overfit problem from train and test errors
- We can tune our hyper-parameters based on that

- We divide the data into 2 sets:
 - Training set
 - Testing set
- We can know if there is underfit or overfit problem from train and test errors
- We can tune our hyper-parameters based on that

- We divide the data into 2 sets:
 - Training set
 - Testing set
- We can know if there is underfit or overfit problem from train and test errors
- We can tune our hyper-parameters based on that

Best Model: Lowest error on the test data

Outline

- Underfitting and Overfitting
- Simple Holdout Cross Validation
 - 4 K-Cross Validation
 - 5 Model Complexity
 - Early Stopping
 - Understanding Validation Error
 - 6 Regularization
 - 7 Variance-Bias Tradeoff

э

イロト イポト イヨト イヨト

• Yes, we can still overfit even when using test data

3

イロト 不得 トイヨト イヨト

- Yes, we can still overfit even when using test data
- This happens when we use the test set too many times to tune hyperparameters of our model (e.g., degree of polynomial, learning rate, training epochs, etc.)

- Yes, we can still overfit even when using test data
- This happens when we use the test set too many times to tune hyperparameters of our model (e.g., degree of polynomial, learning rate, training epochs, etc.)
- The test set becomes part of the training process We lose the ability to generalize

September 25, 2024

25 / 49

- Yes, we can still overfit even when using test data
- This happens when we use the test set too many times to tune hyperparameters of our model (e.g., degree of polynomial, learning rate, training epochs, etc.)
- The test set becomes part of the training process We lose the ability to generalize

September 25, 2024

25 / 49

• Solution: Use a validation set

- Yes, we can still overfit even when using test data
- This happens when we use the test set too many times to tune hyperparameters of our model (e.g., degree of polynomial, learning rate, training epochs, etc.)
- The test set becomes part of the training process We lose the ability to generalize

September 25, 2024

25 / 49

- Solution: Use a validation set
 - Train set: Used to train the model

- Yes, we can still overfit even when using test data
- This happens when we use the test set too many times to tune hyperparameters of our model (e.g., degree of polynomial, learning rate, training epochs, etc.)
- The test set becomes part of the training process We lose the ability to generalize

September 25, 2024

25 / 49

- Solution: Use a validation set
 - Train set: Used to train the model
 - Validation set: Used to tune hyperparameters

Can we still overfit while using the test data?

- Yes, we can still overfit even when using test data
- This happens when we use the test set too many times to tune hyperparameters of our model (e.g., degree of polynomial, learning rate, training epochs, etc.)
- The test set becomes part of the training process We lose the ability to generalize
- Solution: Use a validation set
 - Train set: Used to train the model
 - Validation set: Used to tune hyperparameters
 - Test set: Used once only for final evaluation

Can we still overfit while using the test data?

- Yes, we can still overfit even when using test data
- This happens when we use the test set too many times to tune hyperparameters of our model (e.g., degree of polynomial, learning rate, training epochs, etc.)
- The test set becomes part of the training process We lose the ability to generalize
- Solution: Use a validation set
 - Train set: Used to train the model
 - Validation set: Used to tune hyperparameters
 - Test set: Used once only for final evaluation
- This three-way split helps prevent overfitting on the test data

September 25, 2024

Outline

- Polynomial Regression
- 2 Underfitting and Overfitting
- 3 Simple Holdout Cross Validation

K-Cross Validation

- Model Complexity
 - Early Stopping
 - Understanding Validation Error
- 6 Regularization
- 🕖 Variance-Bias Tradeoff

э

イロト イポト イヨト イヨト

K-Cross Validation

Why?

- We can be exposed to the test set only once.
- We need to estimate future error as accurately as possible.

Ex.

- Randomly split the training into k sets.
- Validate on one in each turn (train on 4 others)
- Average the results over 5 folds

5-fold cross validation

Underfitting and Overfitting problems [The Validation set solution]

Training	Validation	Test
	10% -> 20%	10% -> 20%

- This is called Simple (Holdout) Cross Validation
- Note: We can use more sophisticated cross-validation techniques for better model evaluation.

September 25, 2024

Outline

- Polynomial Regression
- 2 Underfitting and Overfitting
- 3 Simple Holdout Cross Validation
- 4 K-Cross Validation
- 6 Model Complexity
 - Early Stopping
 - Understanding Validation Error
 - 6 Regularization
 - 7 Variance-Bias Tradeoff

- (日)

э

Model Complexity

- As we increase the degree of the polynomial, the model becomes more complex.
- A complex model can fit the training data very well, but it may not generalize well to new, unseen data.
- This is where the concept of model complexity comes into play.

September 25, 2024

Outline

- 2 Underfitting and Overfitting
- Simple Holdout Cross Validation
 - K-Cross Validation
- 6 Model Complexity
 - Early Stopping
 - Understanding Validation Error
- 6 Regularization
 - 🕖 Variance-Bias Tradeoff

э

A B < A B </p>

- (日)

Solving overfitting/underfitting problem [Early Stopping]

- Early stopping is a technique to prevent overfitting
- Monitor the model's performance on a validation set during training
- Training is stopped when the validation error starts to increase
- This helps find the optimal point between underfitting and overfitting

September 25, 2024

Outline

- 2 Underfitting and Overfitting
- Simple Holdout Cross Validation
 - K-Cross Validation

6 Model Complexity

- Early Stopping
- Understanding Validation Error
- 6 Regularization
 - 7 Variance-Bias Tradeoff

э

A B < A B </p>

- (日)

• Why is validation error usually larger than training error?

3

イロト 不得 トイヨト イヨト

• Why is validation error usually larger than training error?

• The model is optimized on the training data

э

• Why is validation error usually larger than training error?

- The model is optimized on the training data
- Validation data is unseen, so performance is typically worse

< □ > < □ > < □ > < □ > < □ > < □ >

• Why is validation error usually larger than training error?

- The model is optimized on the training data
- Validation data is unseen, so performance is typically worse
- This difference helps assess the model's generalization ability

< □ > < □ > < □ > < □ > < □ > < □ >

• Why is validation error usually larger than training error?

- The model is optimized on the training data
- Validation data is unseen, so performance is typically worse
- This difference helps assess the model's generalization ability

< □ > < □ > < □ > < □ > < □ > < □ >

• Why is validation error usually larger than training error?

- The model is optimized on the training data
- Validation data is unseen, so performance is typically worse
- This difference helps assess the model's generalization ability
- Should we always pick the model with the least validation error?

• Why is validation error usually larger than training error?

- The model is optimized on the training data
- Validation data is unseen, so performance is typically worse
- This difference helps assess the model's generalization ability

• Should we always pick the model with the least validation error?

• Not necessarily - consider the following:

• Why is validation error usually larger than training error?

- The model is optimized on the training data
- Validation data is unseen, so performance is typically worse
- This difference helps assess the model's generalization ability

• Should we always pick the model with the least validation error?

- Not necessarily consider the following:
- Balance between performance and complexity

• Why is validation error usually larger than training error?

- The model is optimized on the training data
- Validation data is unseen, so performance is typically worse
- This difference helps assess the model's generalization ability

• Should we always pick the model with the least validation error?

- Not necessarily consider the following:
- Balance between performance and complexity
- Practical considerations (e.g., computational resources)

September 25, 2024

• Why is validation error usually larger than training error?

- The model is optimized on the training data
- Validation data is unseen, so performance is typically worse
- This difference helps assess the model's generalization ability

• Should we always pick the model with the least validation error?

- Not necessarily consider the following:
- Balance between performance and complexity
- Practical considerations (e.g., computational resources)
- Sometimes a simpler model with slightly higher error is preferable

Outline

- Polynomial Regression
- 2 Underfitting and Overfitting
- 3 Simple Holdout Cross Validation
- 4 K-Cross Validation
- 5 Model Complexity
 - Early Stopping
 - Understanding Validation Error
- 6 Regularization
 - 7 Variance-Bias Tradeoff

3

イロト イポト イヨト イヨト

Solving overfitting/underfitting problem [Regularization]

- Higher coefficient values (weights) ⇒ Higher complexity
- Multiple regression example:

$$y = w_0 + w_1 x^1 + w_2 x^2 + w_3 x^3 + \dots + w_n x^n$$

- Larger w_i values indicate more complex model
- Regularization aims to keep these coefficients small
- This helps prevent overfitting by reducing model complexity

Regularization: Example (L1 and L2)

• L1 Regularization (Lasso) - Encourages sparsity (encourages some weights to be zero):

$$L(\mathbf{W}) = \underbrace{(y'-y)^2}_{+} + \underbrace{\lambda \sum |w_i|}_{+}$$

Old Loss term L1 regularization term

• L2 Regularization (Ridge) - Shrinks coefficients:

$$L(\mathbf{W}) = \underbrace{(y'-y)^2}_{} + \underbrace{\lambda \sum w_i^2}_{}$$

Old Loss term L2 regularization term

• Note: λ is a hyperparameter that controls the strength of regularization

Regularization: Numeric Examples

- Consider the following models:
 - Model 1: y = 2x
 - Model 2: y = x + 6
 - Model 3: $y = x + 4x^2 + 9x^3 + 3x^4 + 14x^5 + 2x^6 + 9x^7 + x^8 + 6x^9$
- L1 Norm (sum of absolute values of coefficients):
 - Model 1: |2| = 2
 - Model 2: |1| + |6| = 7
 - Model 3: |1| + |4| + |9| + |3| + |14| + |2| + |9| + |1| + |6| = 49
- L2 Norm (square root of sum of squared coefficients):
 - Model 1: 2² = 4
 - Model 2: $1^2 + 6^2 = 37$
 - Model 3: $1^2 + 4^2 + 9^2 + 3^2 + 14^2 + 2^2 + 9^2 + 1^2 + 6^2 = 425$

• L1 regularization gradient:

$$\frac{\partial L}{\partial w_i} = \frac{\partial}{\partial w_i} \left(\underbrace{(y' - y)^2}_{\text{L2 Error}} + \underbrace{\lambda \sum |w_i|}_{\text{L1 regularization}} \right)$$

イロン イヨン イヨン

September 25, 2024

æ

• L1 regularization gradient:

$$\frac{\partial L}{\partial w_i} = \frac{\partial}{\partial w_i} \left(\underbrace{(y' - y)^2}_{\text{L2 Error}} + \underbrace{\lambda \sum |w_i|}_{\text{L1 regularization}} \right)$$

New Update Rule \Rightarrow $w_i = w_i - \eta \cdot [2x_i(y' - y) + \lambda \cdot sign(w_i)]$

Constant term

イロト 不得下 イヨト イヨト 二日

• L1 regularization gradient:

$$\frac{\partial L}{\partial w_i} = \frac{\partial}{\partial w_i} \left(\underbrace{(y' - y)^2}_{\text{L2 Error}} + \underbrace{\lambda \sum |w_i|}_{\text{L1 regularization}} \right)$$

New Update Rule \Rightarrow $w_i = w_i - \eta \cdot [2x_i(y' - y) + \lambda \cdot sign(w_i)]$ • L2 regularization gradient:

Constant term

$$\frac{\partial L}{\partial w_i} = \frac{\partial}{\partial w_i} \left(\underbrace{(y'-y)^2}_{\text{L2 Error}} + \underbrace{\lambda \sum w_i^2}_{\text{L2 regularization}} \right)$$

• L1 regularization gradient:

$$\frac{\partial L}{\partial w_i} = \frac{\partial}{\partial w_i} \left(\underbrace{(y' - y)^2}_{\text{L2 Error}} + \underbrace{\lambda \sum |w_i|}_{\text{L1 regularization}} \right)$$

New Update Rule \Rightarrow $w_i = w_i - \eta \cdot [2x_i(y' - y) + \lambda \cdot \text{sign}(w_i)]$ • L2 regularization gradient:

$$\frac{\partial L}{\partial w_i} = \frac{\partial}{\partial w_i} \left(\underbrace{(y'-y)^2}_{\text{L2 Error}} + \underbrace{\lambda \sum w_i^2}_{\text{L2 regularization}} \right)$$

New Update Rule \Rightarrow $w_i = w_i - \eta \cdot [2x_i(y' - y) + 2\lambda \cdot w_i]$

Ratio of weight to its value

- L1: The constant $\lambda \cdot \operatorname{sign}(w_i)$ term pushes small weights to **exactly zero** (**sparsity**)
- L2: The 2λw_i term shrinks weights proportionally to their magnitude (shrinkage)

September 25, 2024

Outline

- Polynomial Regression
- 2 Underfitting and Overfitting
- 3 Simple Holdout Cross Validation
- 4 K-Cross Validation
- 5 Model Complexity
 - Early Stopping
 - Understanding Validation Error
- 6 Regularization

э

イロト イポト イヨト イヨト

Variance-Bias Tradeoff

- Variance: How much the model's predictions vary with different type of data.
 - Overfit model: High Variance model
- **Bias:** How much the model's predictions deviate from the true value.
 - Underfit model: High Bias model
- **Tradeoff:** Lower bias often results in higher variance, and vice versa.

Low Variance and High Bias

- Underfits the data
- Poor performance on both training and test sets
- Example: Linear model for complex, non-linear data

High Variance and Low Bias

- Overfits the data
- Excellent performance on training set, poor on test set
- Sensitive to small fluctuations in the training data
- Example: High-degree polynomial for simple, nearly linear data

High Variance and High Bias

- Poor performance on both training and test sets
- Example: Linear model for complex, non-linear data

Low Variance and Low Bias

- Good performance on both training and test sets
- Balances between underfitting and overfitting
- Generalizes well to new, unseen data
- Example: Appropriate complexity model for the given data

Factors Affecting Bias and Variance

Factors contributing to high bias:

- Model simplicity
- Insufficient features
- Incorrect assumptions
- Limited training data

Factors contributing to high variance:

- Model complexity
- Too many features
- Small training set
- High sensitivity to training data

Exercise

We have trained four models in the same dataset with different hyperparameters. In the following table, we have recorded the training and testing errors for each of the models.

Model	Training Error	Testing Error
1	0.1	1.8
2	0.4	1.2
3	0.6	0.8
4	1.9	2.3

Questions:

- (a) Which model would you select for this dataset?
- (b) Which model looks like it's underfitting the data?

Variance-Bias Tradeoff

イロト イヨト イヨト イヨト

September 25, 2024

æ

