ECEN 377: Engineering Applications of AI

Dr. Mahmoud Nabil Mahmoud mnmahmoud@ncat.edu

North Carolina A & T State University

September 25, 2024

医尿囊的 September 25, 2024 1/49

4 **D F**

 QQQ

Outline

1 [Polynomial Regression](#page-1-0)

- [Underfitting and Overfitting](#page-16-0)
- [Simple Holdout Cross Validation](#page-29-0)
- **[K-Cross Validation](#page-38-0)**
- [Model Complexity](#page-41-0)
	- **[Early Stopping](#page-43-0)**
	- [Understanding Validation Error](#page-45-0)
- **[Regularization](#page-56-0)**
- 7 [Variance-Bias Tradeoff](#page-65-0)

目

 QQ

イロト イ押 トイヨ トイヨ トー

イロト イ団 トイ ヨト イヨト 一番 299 September 25, 2024 3/49

重

 299

イロメ イ部メ イヨメ イヨメー

Examples of polynomials:

 $A \Box B$ A

 299

э

Examples of polynomials:

September 25, 2024 6 / 49

• Our basic equation for linear regression with one feature is:

$$
y' = w_1x_1 + w_0
$$

ミドイミドー September 25, 2024 7/49

4 D F

目

• Our basic equation for linear regression with one feature is:

$$
y' = w_1x_1 + w_0
$$

• To fit a quadratic relationship, we can use:

$$
y' = w_2 x_1^2 + w_1 x_1 + w_0
$$

4 **D F**

• Our basic equation for linear regression with one feature is:

$$
y' = w_1x_1 + w_0
$$

• To fit a quadratic relationship, we can use:

$$
y' = w_2 x_1^2 + w_1 x_1 + w_0
$$

This technique of adding polynomial terms is called feature crosses.

つへへ

• Our basic equation for linear regression with one feature is:

$$
y' = w_1x_1 + w_0
$$

• To fit a quadratic relationship, we can use:

$$
y' = w_2 x_1^2 + w_1 x_1 + w_0
$$

- This technique of adding polynomial terms is called feature crosses.
- By adding higher-degree terms, we can increase the model complexity:

$$
y' = w_n x_1^n + w_{n-1} x_1^{n-1} + \dots + w_1 x_1 + w_0
$$

つへへ

• Our basic equation for linear regression with one feature is:

$$
y' = w_1x_1 + w_0
$$

• To fit a quadratic relationship, we can use:

$$
y' = w_2 x_1^2 + w_1 x_1 + w_0
$$

- This technique of adding polynomial terms is called feature crosses.
- By adding higher-degree terms, we can increase the model complexity:

$$
y' = w_n x_1^n + w_{n-1} x_1^{n-1} + \dots + w_1 x_1 + w_0
$$

The degree of the polynomial determines the flexibility of the model.

つへへ

∢ ロ ▶ ィ 伊

×.

重

4 0 8

→ 母

重

4 0 8

∢母

重

Þ

 \sim

K ロ ▶ K 何 ▶

重

Outline

2 [Underfitting and Overfitting](#page-16-0)

[Simple Holdout Cross Validation](#page-29-0)

[K-Cross Validation](#page-38-0)

[Model Complexity](#page-41-0)

- **[Early Stopping](#page-43-0)**
- [Understanding Validation Error](#page-45-0)
- **[Regularization](#page-56-0)**

7 [Variance-Bias Tradeoff](#page-65-0)

G.

 QQ

イロト イ押 トイヨ トイヨ トー

Underfitting and Overfitting problems

Which polynomial degree is suitable for this data? In the previous example,

we saw that the model with $d = 2$ is a good fit for the data.

How do machines know that?!!

 QQ

イロト イ押 トイヨ トイヨ トー

Overfitting and Underfitting

Classification

Wait, how can model 2 have a larger error than model 3, yet still be better for our data?!

September 25, 2024 14 / 49

 Ω

How we supposed to figure out if our model is overfitting or underfitting? 4 D F

Overfitting and Underfitting

Note

A good model (best fit) should be able to generalize to new (unseen) data. How?

• Over-fitting:

- Model too complex (flexible)
- Fits "noise" in the training data
- High error is expected on the test data.

Under-fitting:

- Model too simplistic (too rigid)
- Not powerful enough to capture salient patterns in training data and test data.

医单侧 医单位 September 25, 2024 15/49

 QQQ

- We divide the data into 2 sets:
	- Training set
	- Testing set
- We can know if there is underfit or overfit problem from train and test errors
- We can tune our hyper-parameters based on that

4 **D F**

ヨメ イヨメ September 25, 2024 16 / 49

 QQQ

- We divide the data into 2 sets:
	- Training set
	- Testing set
- We can know if there is underfit or overfit problem from train and test errors
- We can tune our hyper-parameters based on that

4 **D F**

September 25, 2024 17 / 49

 QQQ

化重氮 化重氮

- We divide the data into 2 sets:
	- Training set
	- Testing set
- We can know if there is underfit or overfit problem from train and test errors
- We can tune our hyper-parameters based on that

4 0 F → 何 ▶

September 25, 2024 18 / 49

 QQQ

 $\mathcal{A} \ \equiv \ \mathcal{B} \ \ \mathcal{A} \ \equiv \ \mathcal{B}$

- We divide the data into 2 sets:
	- Training set
	- Testing set
- We can know if there is underfit or overfit problem from train and test errors
- We can tune our hyper-parameters based on that

4 0 F → ● →

September 25, 2024 19 / 49

 QQQ

 $\mathcal{A} \ \equiv \ \mathcal{B} \ \ \mathcal{A} \ \equiv \ \mathcal{B}$

- We divide the data into 2 sets:
	- Training set
	- Testing set
- We can know if there is underfit or overfit problem from train and test errors
- We can tune our hyper-parameters based on that

4 0 F → 何 ▶ 200

化重新润滑脂

- We divide the data into 2 sets:
	- Training set
	- Testing set
- We can know if there is underfit or overfit problem from train and test errors
- We can tune our hyper-parameters based on that

4 0 F

September 25, 2024 21 / 49

 200

Þ \rightarrow \rightarrow \rightarrow

- We divide the data into 2 sets:
	- Training set
	- Testing set
- We can know if there is underfit or overfit problem from train and test errors
- We can tune our hyper-parameters based on that

4 **D F**

IN

- We divide the data into 2 sets:
	- Training set
	- Testing set
- We can know if there is underfit or overfit problem from train and test errors
- We can tune our hyper-parameters based on that

4 **D F**

- We divide the data into 2 sets:
	- Training set
	- Testing set
- We can know if there is underfit or overfit problem from train and test errors
- We can tune our hyper-parameters based on that

4 **D F**

September 25, 2024 23 / 49

 200

Best Model: Lowest error on the test data

Outline

- [Underfitting and Overfitting](#page-16-0)
- 3 [Simple Holdout Cross Validation](#page-29-0)
	- [K-Cross Validation](#page-38-0)
	- [Model Complexity](#page-41-0)
		- **[Early Stopping](#page-43-0)**
		- [Understanding Validation Error](#page-45-0)
	- **[Regularization](#page-56-0)**
- 7 [Variance-Bias Tradeoff](#page-65-0)

目

 QQ

医毛囊 医牙骨下的

◂**◻▸ ◂◚▸**

Yes, we can still overfit even when using test data

G. Ω

イロト イ押 トイヨ トイヨ トー

- Yes, we can still overfit even when using test data
- This happens when we use the test set too many times to tune hyperparameters of our model (e.g., degree of polynomial, learning rate, training epochs, etc.)

 QQQ

- Yes, we can still overfit even when using test data
- This happens when we use the test set too many times to tune hyperparameters of our model (e.g., degree of polynomial, learning rate, training epochs, etc.)
- The test set becomes part of the training process We lose the ability to generalize

September 25, 2024 25 / 49

- Yes, we can still overfit even when using test data
- This happens when we use the test set too many times to tune hyperparameters of our model (e.g., degree of polynomial, learning rate, training epochs, etc.)
- The test set becomes part of the training process We lose the ability to generalize

September 25, 2024 25 / 49

つへへ

• Solution: Use a validation set

- Yes, we can still overfit even when using test data
- This happens when we use the test set too many times to tune hyperparameters of our model (e.g., degree of polynomial, learning rate, training epochs, etc.)
- The test set becomes part of the training process We lose the ability to generalize

September 25, 2024 25 / 49

- **Solution:** Use a validation set
	- Train set: Used to train the model

- Yes, we can still overfit even when using test data
- This happens when we use the test set too many times to tune hyperparameters of our model (e.g., degree of polynomial, learning rate, training epochs, etc.)
- The test set becomes part of the training process We lose the ability to generalize

September 25, 2024 25 / 49

- **Solution:** Use a validation set
	- Train set: Used to train the model
	- Validation set: Used to tune hyperparameters
Can we still overfit while using the test data?

- Yes, we can still overfit even when using test data
- This happens when we use the test set too many times to tune hyperparameters of our model (e.g., degree of polynomial, learning rate, training epochs, etc.)
- The test set becomes part of the training process We lose the ability to generalize
- **Solution:** Use a validation set
	- Train set: Used to train the model
	- Validation set: Used to tune hyperparameters
	- Test set: Used **once** only for final evaluation

Can we still overfit while using the test data?

- Yes, we can still overfit even when using test data
- This happens when we use the test set too many times to tune hyperparameters of our model (e.g., degree of polynomial, learning rate, training epochs, etc.)
- The test set becomes part of the training process We lose the ability to generalize
- **Solution:** Use a validation set
	- Train set: Used to train the model
	- Validation set: Used to tune hyperparameters
	- Test set: Used **once** only for final evaluation
- This three-way split helps prevent overfitting on the test data

September 25, 2024 25 / 49

 QQ

イロト イ押ト イヨト イヨト

September 25, 2024 26 / 49

G.

 QQ

イロト イ押 トイヨ トイヨ トー

Outline

- [Polynomial Regression](#page-1-0)
- [Underfitting and Overfitting](#page-16-0)
- [Simple Holdout Cross Validation](#page-29-0)

[K-Cross Validation](#page-38-0)

- [Model Complexity](#page-41-0)
	- **[Early Stopping](#page-43-0)**
	- [Understanding Validation Error](#page-45-0)
- **[Regularization](#page-56-0)**
- 7 [Variance-Bias Tradeoff](#page-65-0)

K-Cross Validation

Why?

- We can be exposed to the test set only once.
- We need to estimate future error as accurately as possible.

Ex.

- Randomly split the training into k sets.
- Validate on one in each turn (train on 4 others)
- Average the results over 5 folds

5-fold cross validation

4 **D F**

э

 Ω

化重新润滑脂

Underfitting and Overfitting problems **[The Validation** set solution 1

- This is called Simple (Holdout) Cross Validation
- Note: We can use more sophisticated cross-validation techniques for better model evaluation.

September 25, 2024 28 / 49

 Ω

イ何 ト イヨ ト イヨ トー

化重新润滑脂 September 25, 2024 29 / 49

4 0 F → 母 э

 QQ

Outline

- [Polynomial Regression](#page-1-0)
- [Underfitting and Overfitting](#page-16-0)
- [Simple Holdout Cross Validation](#page-29-0)
- **[K-Cross Validation](#page-38-0)**
- 5 [Model Complexity](#page-41-0)
	- **[Early Stopping](#page-43-0)**
	- [Understanding Validation Error](#page-45-0)
	- **[Regularization](#page-56-0)**
- 7 [Variance-Bias Tradeoff](#page-65-0)

Model Complexity

- As we increase the degree of the polynomial, the model becomes more complex.
- A complex model can fit the training data very well, but it may not generalize well to new, unseen data.
- This is where the concept of model complexity comes into play.

 \leftarrow \Box

September 25, 2024 30 / 49

Outline

- 2 [Underfitting and Overfitting](#page-16-0)
- 3 [Simple Holdout Cross Validation](#page-29-0)
	- **[K-Cross Validation](#page-38-0)**
- 5 [Model Complexity](#page-41-0)
	- **[Early Stopping](#page-43-0)**
	- [Understanding Validation Error](#page-45-0)
	- **[Regularization](#page-56-0)**
	- 7 [Variance-Bias Tradeoff](#page-65-0)

目

 QQ

化重新润滑脂

4 0 F → 何 ▶

Solving overfitting/underfitting problem **[Early Stopping]**

- Early stopping is a technique to prevent overfitting
- Monitor the model's performance on a validation set during training
- Training is stopped when the validation error starts to increase
- This helps find the optimal point between underfitting and overfitting

September 25, 2024 32 / 49

Outline

- 2 [Underfitting and Overfitting](#page-16-0)
- 3 [Simple Holdout Cross Validation](#page-29-0)
	- **[K-Cross Validation](#page-38-0)**

5 [Model Complexity](#page-41-0)

- **[Early Stopping](#page-43-0)**
- [Understanding Validation Error](#page-45-0)
- **[Regularization](#page-56-0)**
- 7 [Variance-Bias Tradeoff](#page-65-0)

э

 QQ

化重新润滑脂

→ 伊→

4 0 F

Why is validation error usually larger than training error?

目

 Ω

September 25, 2024 34 / 49

э

 Ω

イロト イ押 トイヨ トイヨ トー

Understanding Validation Error

Why is validation error usually larger than training error?

• The model is optimized on the training data

Why is validation error usually larger than training error?

- The model is optimized on the training data
- Validation data is unseen, so performance is typically worse

 QQ

Why is validation error usually larger than training error?

- The model is optimized on the training data
- Validation data is unseen, so performance is typically worse
- This difference helps assess the model's generalization ability

 QQ

 $A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$

4 0 F

Why is validation error usually larger than training error?

- The model is optimized on the training data
- Validation data is unseen, so performance is typically worse
- This difference helps assess the model's generalization ability

 QQ

 $A \oplus A \rightarrow A \oplus A \rightarrow A \oplus A$

4 0 F

Why is validation error usually larger than training error?

- The model is optimized on the training data
- Validation data is unseen, so performance is typically worse
- This difference helps assess the model's generalization ability
- Should we always pick the model with the least validation error?

 Ω

 $A \oplus A \times A \oplus A \times A \oplus A$

Why is validation error usually larger than training error?

- The model is optimized on the training data
- Validation data is unseen, so performance is typically worse
- This difference helps assess the model's generalization ability

Should we always pick the model with the least validation error?

September 25, 2024 34 / 49

 Ω

 $A \oplus A \times A \oplus A \times A \oplus A$

Not necessarily - consider the following:

Why is validation error usually larger than training error?

- The model is optimized on the training data
- Validation data is unseen, so performance is typically worse
- This difference helps assess the model's generalization ability

Should we always pick the model with the least validation error?

September 25, 2024 34 / 49

 Ω

 $A \oplus A \times A \oplus A \times A \oplus A$

- Not necessarily consider the following:
- Balance between performance and complexity

Why is validation error usually larger than training error?

- The model is optimized on the training data
- Validation data is unseen, so performance is typically worse
- This difference helps assess the model's generalization ability

Should we always pick the model with the least validation error?

- Not necessarily consider the following:
- Balance between performance and complexity
- Practical considerations (e.g., computational resources)

September 25, 2024 34 / 49

 Ω

Why is validation error usually larger than training error?

- The model is optimized on the training data
- Validation data is unseen, so performance is typically worse
- This difference helps assess the model's generalization ability

Should we always pick the model with the least validation error?

- Not necessarily consider the following:
- Balance between performance and complexity
- Practical considerations (e.g., computational resources)
- Sometimes a simpler model with slightly higher error is preferable

September 25, 2024 34 / 49

 Ω

Outline

- [Polynomial Regression](#page-1-0)
- [Underfitting and Overfitting](#page-16-0)
- [Simple Holdout Cross Validation](#page-29-0)
- **[K-Cross Validation](#page-38-0)**
- [Model Complexity](#page-41-0)
	- **[Early Stopping](#page-43-0)**
	- [Understanding Validation Error](#page-45-0)

6 [Regularization](#page-56-0)

7 [Variance-Bias Tradeoff](#page-65-0)

G.

 QQ

Solving overfitting/underfitting problem **[Regularization]**

- Higher coefficient values (weights) \Rightarrow Higher complexity
- Multiple regression example: $y = w_0 + w_1 x^1 + w_2 x^2 + w_3 x^3 + \dots + w_n x^n$
- \bullet Larger w_i values indicate more complex model
- Regularization aims to keep these coefficients small
- This helps prevent overfitting by reducing model complexity

イロト イ母 トイミト イヨト ニヨー りんぴ September 25, 2024 36 / 49

Regularization: Example (L1 and L2)

L1 Regularization (Lasso) - Encourages sparsity (encourages some weights to be zero):

$$
L(\mathbf{W}) = \underbrace{(y'-y)^2}_{\sim} + \underbrace{\lambda \sum |w_i|}_{\sim}
$$

<u>o</u>
Old Loss term L1 regularization term

L2 Regularization (Ridge) - Shrinks coefficients:

$$
L(\mathbf{W}) = \underbrace{(y'-y)^2}_{\text{Old Loss term}} + \underbrace{\lambda \sum w_i^2}_{\text{L2 regularization term}}
$$

September 25, 2024 37 / 49

 QQQ

イロト イ押 トイヨ トイヨ トーヨ

• Note: λ is a hyperparameter that controls the strength of regularization

Regularization: Numeric Examples

• Consider the following models:

• Model 1: $y = 2x$

• Model 2:
$$
y = x + 6
$$

Model 3: $y = x + 4x^2 + 9x^3 + 3x^4 + 14x^5 + 2x^6 + 9x^7 + x^8 + 6x^9$

L1 Norm (sum of absolute values of coefficients):

- Model 1: ∣2∣ = 2
- Model 2: $|1| + |6| = 7$
- Model 3: $|1| + |4| + |9| + |3| + |14| + |2| + |9| + |1| + |6| = 49$

L2 Norm (square root of sum of squared coefficients):

- Model 1: $2^2 = 4$
- Model 2: $1^2 + 6^2 = 37$
- Model 3: $1^2 + 4^2 + 9^2 + 3^2 + 14^2 + 2^2 + 9^2 + 1^2 + 6^2 = 425$

L1 regularization gradient:

$$
\frac{\partial L}{\partial w_i} = \frac{\partial}{\partial w_i} \left(\underbrace{(y' - y)^2}_{L2 \text{ Error}} + \underbrace{\lambda \sum |w_i|}_{L1 \text{ regularization}} \right)
$$

重 September 25, 2024 39 / 49

 QQ

ミドメミドー

4 0 F

• L1 regularization gradient:

$$
\frac{\partial L}{\partial w_i} = \frac{\partial}{\partial w_i} \left(\underbrace{(y' - y)^2}_{\text{L2 Error}} + \underbrace{\lambda \sum |w_i|}_{\text{L1 regularization}} \right)
$$

New Update Rule $\Rightarrow w_i = w_i - \eta \cdot [2x_i(y'-y) + \lambda \cdot sign(w_i)]$

Constant term

 Ω

• L1 regularization gradient:

$$
\frac{\partial L}{\partial w_i} = \frac{\partial}{\partial w_i} \left(\underbrace{(y' - y)^2}_{\text{L2 Error}} + \underbrace{\lambda \sum |w_i|}_{\text{L1 regularization}} \right)
$$

New Update Rule $\Rightarrow w_i = w_i - \eta \cdot [2x_i(y'-y) + \lambda \cdot sign(w_i)]$ Constant term • L2 regularization gradient:

$$
\frac{\partial L}{\partial w_i} = \frac{\partial}{\partial w_i} \left(\underbrace{(y' - y)^2}_{L2 \text{ Error}} + \underbrace{\lambda \sum w_i^2}_{L2 \text{ regularization}} \right)
$$

 QQQ

化重变 化重变性

∢ □ ▶ ⊣ *←* □

• L1 regularization gradient:

$$
\frac{\partial L}{\partial w_i} = \frac{\partial}{\partial w_i} \left(\underbrace{(y' - y)^2}_{L2 \text{ Error}} + \underbrace{\lambda \sum |w_i|}_{L1 \text{ regularization}} \right)
$$

New Update Rule $\Rightarrow w_i = w_i - \eta \cdot [2x_i(y'-y) + \lambda \cdot sign(w_i)]$ Constant term • L2 regularization gradient:

$$
\frac{\partial L}{\partial w_i} = \frac{\partial}{\partial w_i} \left(\underbrace{(y' - y)^2}_{L2 \text{ Error}} + \underbrace{\lambda \sum w_i^2}_{L2 \text{ regularization}} \right)
$$

New Update Rule $\Rightarrow w_i = w_i - \eta \cdot [2x_i(y'-y) + 2\lambda \cdot w_i]$ \rfloor

Ratio of weight to its value

 \equiv \cap α

September 25, 2024 39 / 49

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

- L1: The constant $\lambda \cdot \text{sign}(w_i)$ term pushes small weights to **exactly** zero (sparsity)
- L2: The $2\lambda w_i$ term shrinks weights proportionally to their magnitude (shrinkage)

Outline

- [Polynomial Regression](#page-1-0)
- [Underfitting and Overfitting](#page-16-0)
- [Simple Holdout Cross Validation](#page-29-0)
- [K-Cross Validation](#page-38-0)
- [Model Complexity](#page-41-0)
	- **[Early Stopping](#page-43-0)**
	- [Understanding Validation Error](#page-45-0)
- **[Regularization](#page-56-0)**

G.

 QQ

Variance-Bias Tradeoff

- **Variance:** How much the model's predictions vary with different type of data.
	- Overfit model: High Variance model
- Bias: How much the model's predictions deviate from the true value.
	- Underfit model: High Bias model
- **o** Tradeoff: Lower bias often results in higher variance, and vice versa.

4 **D F**

Low Variance and High Bias

Characteristics:

- Underfits the data
- Poor performance on both training and test sets
- Example: Linear model for complex, non-linear data

4 **D F**

September 25, 2024 43 / 49

 QQQ

 \rightarrow \rightarrow \rightarrow

High Variance and Low Bias

• Characteristics:

- Overfits the data
- Excellent performance on training set, poor on test set
- Sensitive to small fluctuations in the training data
- **•** Example: High-degree polynomial for simple, nearly linear data

4 0 8

High Variance and High Bias

e Characteristics:

- Poor performance on both training and test sets
- Example: Linear model for complex, non-linear data

4 **D F**

September 25, 2024 45 / 49

Low Variance and Low Bias

• Characteristics:

- Good performance on both training and test sets
- Balances between underfitting and overfitting
- **Generalizes well to new,** unseen data
- Example: Appropriate complexity model for the given data

4 **D F**

September 25, 2024 46 / 49

 QQ

化重复化重复

September 25, 2024 47 / 49

 QQQ

Factors Affecting Bias and Variance

Factors contributing to high bias:

- Model simplicity
- **o** Insufficient features
- Incorrect assumptions
- **•** Limited training data

Factors contributing to high variance:

- Model complexity
- Too many features
- **•** Small training set
- High sensitivity to training data
Exercise

We have trained four models in the same dataset with different hyperparameters. In the following table, we have recorded the training and testing errors for each of the models.

Questions:

- (a) Which model would you select for this dataset?
- (b) Which model looks like it's underfitting the data?

 QQ

→ イ何 ト イヨ ト イヨ トー

[Variance-Bias Tradeoff](#page-65-0)

September 25, 2024 49 / 49

重

 299

イロメ イ母メ イヨメ イヨメー

