ECEN 377: Engineering Applications of AI

Dr. Mahmoud Nabil Mahmoud mnmahmoud@ncat.edu

North Carolina A & T State University

September 20, 2024

September 20, 2024

1/78

Outline

Linear Regression Definition

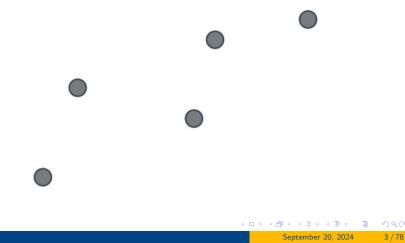
- 2) Weights and Bias
- B) How do machines learn linear regression?
 - Loss Function (Error Function)
 - Gradient for Linear Regression
 - Convergence Criteria
 - Learning Rate
 - Types of Gradient Descent
- Multivariate Linear Regression and Gradient Descent
 - Definition and Example
 - Normal Equation

э

イロト イポト イヨト イヨト

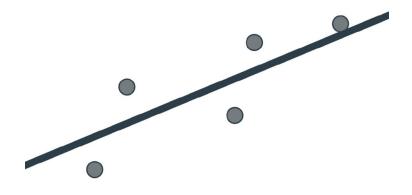
Linear Regression

Can you design a linear road that pass by all these houses equally ?!



Linear Regression

Can you design a linear road that pass by all these houses equally?!



Housing prices problem

- What are the features and labels here?
- Is it classification or regression problem?
- What is the price of the house of 4 rooms?
- What is the price per extra room? (#Room × weight)
- What is the base price? (Bias)
- What is the equation that represents the price?
- Price = 100 + 50 * (#Rooms)

Number of rooms	Price
1	150
2	200
3	250
4	?
5	350
6	400
7	450

Outline

2 Weights and Bias

How do machines learn linear regression?

- Loss Function (Error Function)
- Gradient for Linear Regression
- Convergence Criteria
- Learning Rate
- Types of Gradient Descent

Multivariate Linear Regression and Gradient Descent

- Definition and Example
- Normal Equation

э

< ロ > < 同 > < 回 > < 回 > < 回 > <

Weights and Bias

Price Equation

WEIGHTS

Each feature gets multiplied by a corresponding factor. These factors are the weights. In the above formula the only feature is the number of rooms, and its value is 50.

BIAS

Constant that is not attached to any of the features. It is called the bias. In this model, the bias is 100 and it corresponds to the base price of a house.

Weights and Bias

Price Equation

$$\mathsf{Price} = 100 + 50 \, * \, (\#\mathsf{Rooms})$$

WEIGHTS

Each feature gets multiplied by a corresponding factor. These factors are the weights. In the above formula the only feature is the number of rooms, and its value is 50.

BIAS

Constant that is not attached to any of the features. It is called the bias. In this model, the bias is 100 and it corresponds to the base price of a house.

How do machines learn this equation?

Outline

Weights and Bias

How do machines learn linear regression?

- Loss Function (Error Function)
- Gradient for Linear Regression
- Convergence Criteria
- Learning Rate
- Types of Gradient Descent

Multivariate Linear Regression and Gradient Descent

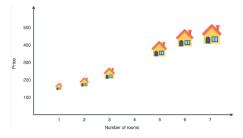
- Definition and Example
- Normal Equation

A B M A B M

- ∢ /⊐ >

How do machines learn linear regression?

How machines learn it? [Remember-Formulate-Predict]

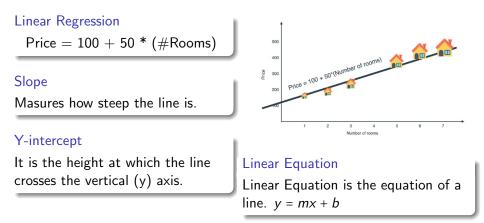


Number of rooms	Price
1	150
2	200
3	250
4	?
5	350
6	400
7	450

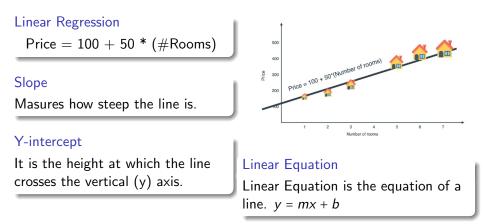
Image: Image:

∃ → September 20, 2024 9/78

How machines learn it? [Remember-Formulate-Predict]



How machines learn it? [Remember-Formulate-Predict]



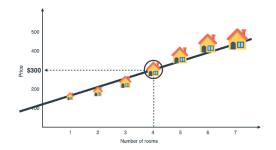
September 20, 2024

How many lines can solve the problem?

How machines learn it? [Remember-Formulate-Predict]

 $\begin{array}{l} \text{Price} = 100 + 50 \times (\#\text{Rooms}) \\ \text{Price} = 100 + 50 \times (4) = 300 \\ \text{Some Questions:} \end{array}$

- Can we have multiple features data?
- How does computer learn this equation?



September 20, 2024

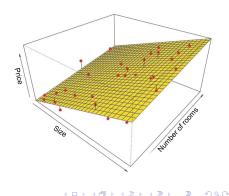
Multivariate Linear Regression

Multivariate Linear Regression

 $\mathsf{Price} = 30^*(\#\mathsf{Rooms}) + 1.5^*(\mathsf{Size}) + 10^*(\mathsf{Schools Quality}) - 2^*(\mathsf{Age}) + 50$

What do you notice in this equation?

- 1 bias and multiple weights
- Different sign of weights
- Different weights value
- What is the shape of the model? Still linear?



Overview

Inputs: A dataset of points.

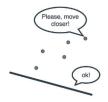
Outputs: A linear regression model that fits that dataset.

Procedure:

- Pick a model with random weights and a random bias.
- Repeat many times:
 - Pick a random data point.
 - Slightly adjust the weights (Slope) and bias (y-intercept) in order to improve the prediction for that particular data point.
- Return the model you've obtained.

How do machines learn linear regression?

How machines formulate this equation?[Overview]



September 20, 2024 14 / 78

イロト イヨト イヨト -

æ



Image: A matrix

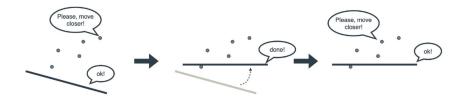


Image: A matrix

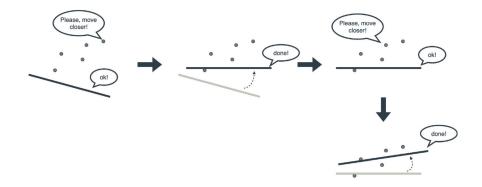


Image: A matrix

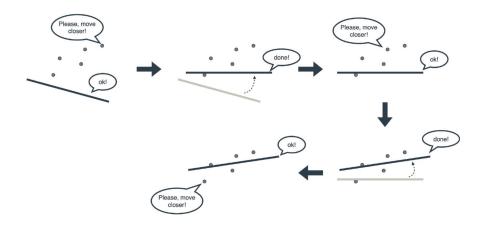


Image: Image:

3

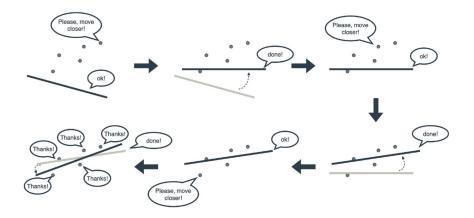


Image: A matrix

3

Linear Relationship

A linear relationship

- True, the line doesn't pass through every dot.
- However, the line does clearly show the relationship between rooms and price.

$$y' = mx + b$$

where:

- y': is the price that value we're trying to predict.
- *m*: is the slope of the line.
- x: is the number of rooms value of our input feature.
- **b**: is the y-intercept.

Linear Relationship in Machine Learning

In machine learning, we'll write the equation for a model slightly differently:

$$y' = w_1 x_1 + w_0$$

where:

- y': is the predicted label (a desired output).
- *w*₁: is the weight of feature 1. Weight is the same concept as the "slope".

September 20, 2024

- x₁: is feature 1.
- w_0 or *b*: is the bias (the y-intercept).

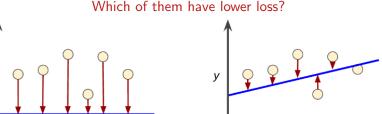
Training and Loss

V

- **Training** a model simply means learning (determining) good values for all the weights and the bias from labeled examples.
- Loss is the penalty for a bad prediction.
 - Perfect prediction means the loss is zero
 - Bad model have large loss.

Χ,

Suppose we selected the following weights and biases.

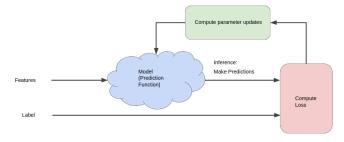


Which of them have lower loss?

Χ,

Reducing Loss

• **Training** is a feedback iterative process that use the loss function to improve the model parameters.



Some Questions

- How to define loss to measure the performance of the model?
- What initial values should we set for w_1 and w_0 ?
- How to update w_1 and w_0 ?

Outline

- Linear Regression Definition
- 2 Weights and Bias

Bow do machines learn linear regression?

- Loss Function (Error Function)
- Gradient for Linear Regression
- Convergence Criteria
- Learning Rate
- Types of Gradient Descent

Multivariate Linear Regression and Gradient Descent

- Definition and Example
- Normal Equation

< □ > < □ > < □ > < □ > < □ > < □ >

Loss Definition

Which model is **better** and why? Which model have a **lower loss**?

Image: Image:

Absolute Loss (L1 Loss)

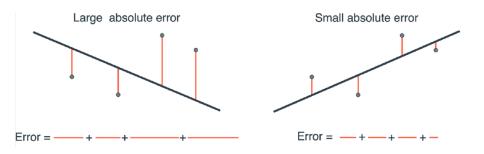
The absolute loss is the **sum** of the absolute differences between the observed and predicted values.

$$|obsevation(x) - prediction(x)|$$

= $|(y - y')|$

Absolute Loss (L1 Loss)

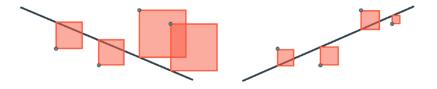
The absolute loss is the **sum** of the absolute differences between the observed and predicted values.



September 20, 2024

Squared Loss (L2 Loss)

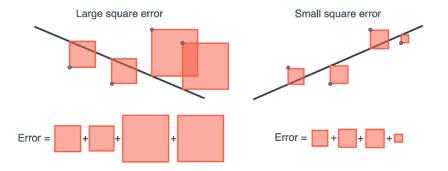
The squared loss is the **sum** of the squared differences between the observed and predicted values.



$$[obsevation(x) - prediction(x)]^2 = [(y - y')]^2$$

Squared Loss (L2 Loss)

The squared loss is the **sum** of the squared differences between the observed and predicted values..



Why Squared Loss?

3

イロン イ理 とくほとう ほんし

Why Squared Loss?

- The squared loss is used in many machine learning algorithms because it penalizes larger errors more than smaller ones. This property makes it more sensitive to outliers compared to absolute loss.
- The squared loss also leads to a **nicer derivative** compared to the absolute loss, which simplifies optimization algorithms like gradient descent.

Mean square error (MSE)

• Is the average squared loss per example over the whole dataset.

$$MSE = \frac{1}{N} \sum_{(x,y) \in D} (y - prediction(x))^2$$

- (x,y) is an example in which
 - y is the label
 - x is a feature
- prediction(x) is equal $y' = w_1 x + w_0$
- D is the dataset that contains all (x,y) pairs
- N is the number of samples in D

Reducing Loss

Gradient Descent

- The story starts with the error (cost) function.
- The machine's goal is to decrease the error.
- Here comes the gradient descent magic.

Reducing Loss

Gradient Descent

- The story starts with the error (cost) function.
- The machine's goal is to decrease the error.
- Here comes the gradient descent magic.

< 行

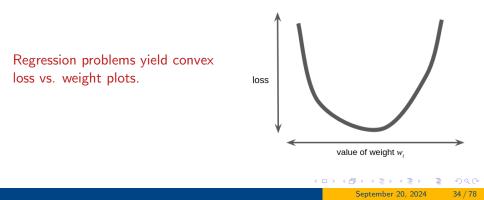
Gradient Descent (1/3)

- Assume (for symplicity) we are only concerned with finding w_1 .
- Assume we had the time and the computing resources to calculate the loss for all possible values of w_1 .

イロト 不得 ト イヨト イヨト

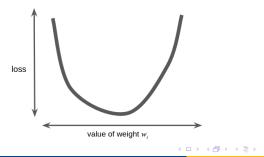
Gradient Descent (1/3)

- Assume (for symplicity) we are only concerned with finding w_1 .
- Assume we had the time and the computing resources to calculate the loss for all possible values of *w*₁.



Gradient Descent (2/3)

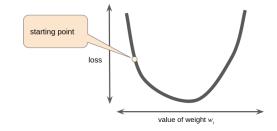
- Gradient descent enables you to find the optimal *w* without computing for all possible values.
- Gradient descent has the following steps
 - Pick a random starting point for w
 - 2 Calculates the gradient of the loss curve at w.
 - Opdate w
 - go to 2, till convergence



Gradient Descent (3/3)

Note that a gradient is a vector, so it has both of the following characteristics:

- Magnitude
- Direction

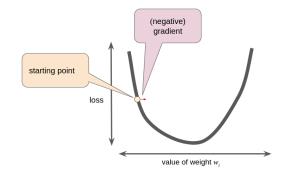


$$w_{new} = w_{old} - \eta * \frac{d \ loss}{dw}$$

э

Gradient Descent (3/3)

The gradient descent algorithm takes a step in the direction of the negative gradient



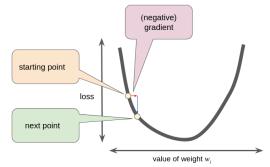
$$w_{new} = w_{old} - \eta * \frac{d \ loss}{dw}$$

3

< □ > < □ > < □ > < □ > < □ > < □ >

Gradient Descent (3/3)

the gradient descent algorithm adds some fraction of the gradient's magnitude (Learning Rate η) to the previous point



A (10) × (10)

September 20, 2024

э

36 / 78

$$w_{new} = w_{old} - \eta * \frac{d \ loss}{dw}$$

Outline

- Linear Regression Definition
- 2 Weights and Bias
 - How do machines learn linear regression?
 - Loss Function (Error Function)
 - Gradient for Linear Regression
 - Convergence Criteria
 - Learning Rate
 - Types of Gradient Descent

Multivariate Linear Regression and Gradient Descent

- Definition and Example
- Normal Equation

< □ > < □ > < □ > < □ > < □ > < □ >

Gradient for Linear Regression

- For linear regression, the gradient of the loss function with respect to the weights *w*₁ and *w*₀ can be derived as follows:
- The loss function for linear regression is typically the I2 loss:

$$loss(w_0, w_1) = [y - y']^2 = [y - (w_1 x + w_0)]^2$$
(1)

◆□ ▶ ◆ 酉 ▶ ◆ 壹 ▶ ◆ 壹 ▶
September 20, 2024

38 / 78

Gradient for Linear Regression

- For linear regression, the gradient of the loss function with respect to the weights *w*₁ and *w*₀ can be derived as follows:
- The loss function for linear regression is typically the I2 loss:

$$loss(w_0, w_1) = [y - y']^2 = [y - (w_1 x + w_0)]^2$$
(1)

• The gradient of the loss function with respect to the weights w₁ and w₀ can be derived as follows:

$$\frac{d \ loss}{dw_1} = 2(y - y')(-x) = 2x(y' - y) \tag{2}$$

$$\frac{d \ loss}{dw_0} = 2(y - y')(-1) = 2(y' - y) \tag{3}$$

September 20, 2024

38 / 78

Full Gradient for Linear Regression

Procedure:

- Pick random weight w_1 and a random bias w_0 .
- Repeat many times:
 - Pick a random data point $(x^{(i)}, y^{(i)})$.
 - 2 Compute Model Prediction $y'^{(i)} = w_1 x_1^{(i)} + w_0$
 - Opdate the weights and bias using the following equations:

$$w_1 = w_1 - \eta \frac{d \ loss}{dw_1} \tag{4}$$

$$= w_1 - \eta 2x_1^{(i)} (\underbrace{y^{\prime(i)} - y^{(i)}}_{})$$
(5)

error

$$w_0 = w_0 - \eta \frac{d \ loss}{dw_0} \tag{6}$$

error

• Return the model you've obtained.

September 20, 2024 39 / 78

Gradient Descent for Linear Regression

э

Gradient Descent for Linear Regression

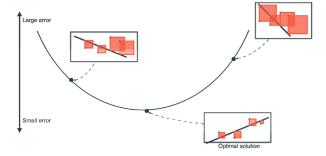
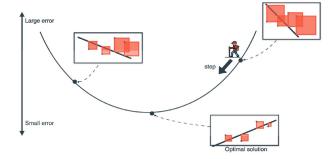


Image: A image: A

æ

Gradient Descent for Linear Regression



∃ → September 20, 2024 42 / 78

æ

Outline

- Linear Regression Definition
- 2 Weights and Bias

How do machines learn linear regression?

- Loss Function (Error Function)
- Gradient for Linear Regression
- Convergence Criteria
- Learning Rate
- Types of Gradient Descent

Multivariate Linear Regression and Gradient Descent

- Definition and Example
- Normal Equation

< ロ > < 同 > < 回 > < 回 > < 回 > <

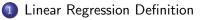
Convergence Criteria

- For convex functions, optimum occurs when
 - $\left|\frac{d \ loss}{dw}\right| = 0$
- In practice, stop when

•
$$\left|\frac{d \ loss}{dw}\right| \le \epsilon$$

- 20

Outline



2 Weights and Bias

How do machines learn linear regression?

- Loss Function (Error Function)
- Gradient for Linear Regression
- Convergence Criteria
- Learning Rate
- Types of Gradient Descent

Multivariate Linear Regression and Gradient Descent

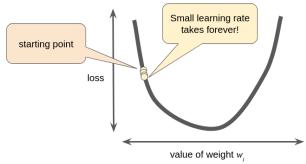
- Definition and Example
- Normal Equation

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Gradient descent algorithms multiply the gradient by a scalar known as the learning rate (also sometimes called step size) .
- How can we choose the learning rate?

イロト 不得 ト イヨト イヨト

- Gradient descent algorithms multiply the gradient by a scalar known as the learning rate (also sometimes called step size) .
- How can we choose the learning rate?

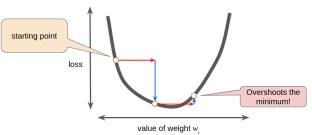


Small Learning Rate

→ < ∃ →</p>

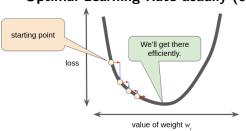
- (日)

- Gradient descent algorithms multiply the gradient by a scalar known as the learning rate (also sometimes called step size) .
- How can we choose the learning rate?



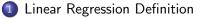
Large Learning Rate

- Gradient descent algorithms multiply the gradient by a scalar known as the learning rate (also sometimes called step size) .
- How can we choose the learning rate?



Optimal Learning Rate usually (0.01)

Outline



2 Weights and Bias

How do machines learn linear regression?

- Loss Function (Error Function)
- Gradient for Linear Regression
- Convergence Criteria
- Learning Rate
- Types of Gradient Descent

Multivariate Linear Regression and Gradient Descent

- Definition and Example
- Normal Equation

< ロ > < 同 > < 回 > < 回 > < 回 > <

Types of Gradient Descents

• Batch Gradient Descent:

- MSE loss assumes taking gradient for the total number of samples in the data set
- Data sets often contain billions or even hundreds of billions of examples
- Can take a very long time to compute.
- Stochastic Gradient Descent (SGD):
 - Uses only a single example (a batch size of 1) per iteration.
 - Very noisy.

• Mini-Batch Gradient Descent:

- Compromise between full-batch iteration and SGD
- Typically a batch of size between 10 and 1,000 examples, chosen at random.

September 20, 2024

48 / 78

Outline

- Linear Regression Definition
- 2 Weights and Bias
- How do machines learn linear regression?
 - Loss Function (Error Function)
 - Gradient for Linear Regression
 - Convergence Criteria
 - Learning Rate
 - Types of Gradient Descent

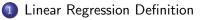
Multivariate Linear Regression and Gradient Descent

- Definition and Example
- Normal Equation

A B M A B M

- ∢ /⊐ >

Outline



2 Weights and Bias

How do machines learn linear regression?

- Loss Function (Error Function)
- Gradient for Linear Regression
- Convergence Criteria
- Learning Rate
- Types of Gradient Descent

Multivariate Linear Regression and Gradient Descent

- Definition and Example
- Normal Equation

- 4 回 ト 4 三 ト 4 三 ト

- The general case of linear regression has more than one input feature.
- The model now becomes:

$$y' = w_1 x_1 + w_2 x_2 + \dots + w_n x_n + w_0$$
(8)

• We can rewrite this as:

$$y' = \sum_{i=0}^{i=n} w_i x_i$$
 (9)

• Note w_0 is the bias (intercept), and $x_0 = 1$.

Generalization and Gradient

• For n features:
$$y' = \sum_{i=0}^{l=n} w_i x_i$$

- Note w_0 is the bias (intercept), and $x_0 = 1$.
- vector representation $\mathbf{y}' = \mathbf{w}^T \mathbf{x}$
- Loss = $\ell = (y y')^2$
- Gradient derivation

$$\frac{d\ell}{dw_i} = \frac{d\ell}{dy'} \frac{dy'}{dw_i}$$
$$= [2(y' - y) * x_i]$$

Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

æ

イロン 不聞 とくほとう ほとう

Size (feet²) X ₁	Number of bedrooms X ₂	Number of floors X ₃	Age of home (years) X ₄	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

イロト イヨト イヨト イヨト

æ

Size (feet ²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
X ₁	X ₂	X ₃	X 4	Y
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178

3

Size (feet ²)		Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
	X ₁	X ₂	X ₃	X 4	Y
X ⁽¹⁾	2104	5	1	45	460
X ⁽²⁾	1416	3	2	40	232
X ⁽³⁾	1534	3	2	30	315
X ⁽⁴⁾	852	2	1	36	178

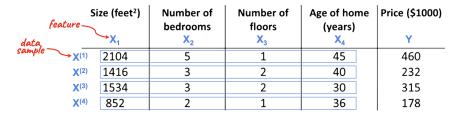
イロト イヨト イヨト イヨト

3

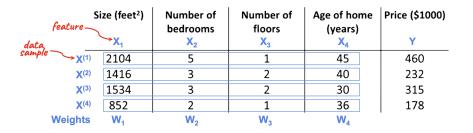
Size (feet²)		Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
	→X ₁	X ₂	X ₃	X ₄	Y
X ⁽¹⁾	2104	5	1	45	460
X ⁽²⁾	1416	3	2	40	232
X ⁽³⁾	1534	3	2	30	315
X ⁽⁴⁾	852	2	1	36	178

イロト イヨト イヨト イヨト

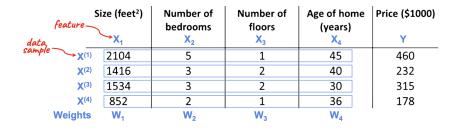
æ



3

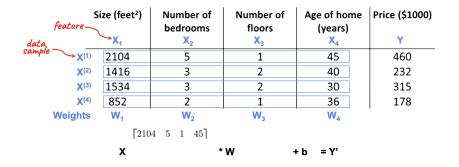


3

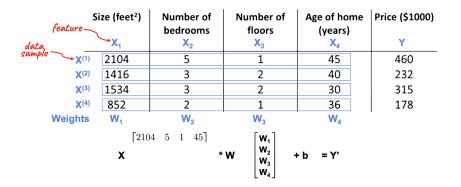


X *W +b =Y'

3

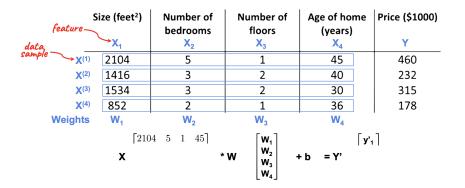


3



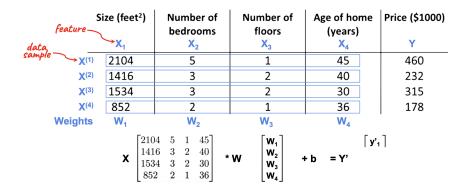
3

(日) (四) (日) (日) (日)

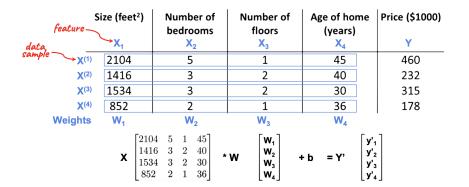


3

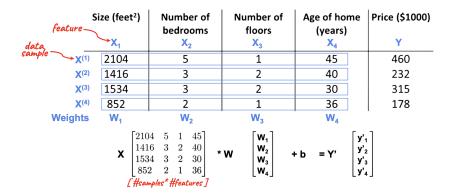
(日) (四) (日) (日) (日)



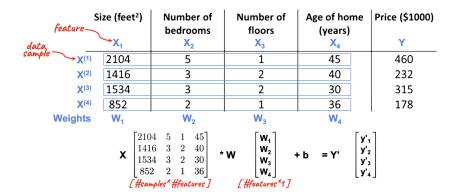
э



э



э



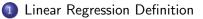
September 20, 2024 67 / 78

э



э

Outline



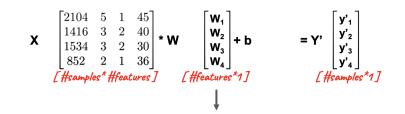
2 Weights and Bias

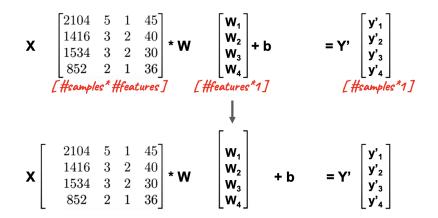
How do machines learn linear regression?

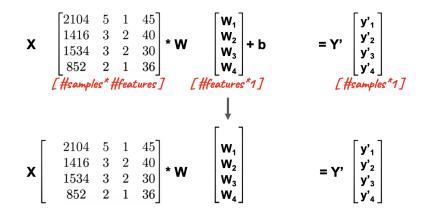
- Loss Function (Error Function)
- Gradient for Linear Regression
- Convergence Criteria
- Learning Rate
- Types of Gradient Descent

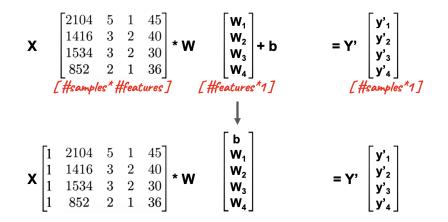
Multivariate Linear Regression and Gradient Descent

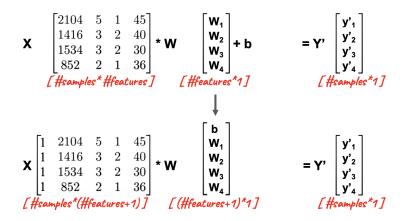
- Definition and Example
- Normal Equation











・ 何 ト ・ ヨ ト ・ ヨ ト …

 Normal equation is a closed-form solution to the linear regression problem.

イロト イヨト イヨト イヨト

э

- Normal equation is a closed-form solution to the linear regression problem.
- It provides an exact solution to the model parameters *w* that minimize the squared error between the predicted and actual values.

A (10) × (10)

- Normal equation is a closed-form solution to the linear regression problem.
- It provides an exact solution to the model parameters *w* that minimize the squared error between the predicted and actual values.
- Since we have:

$$\mathbf{Y} = \mathbf{X} \cdot \mathbf{W} \tag{10}$$

- Normal equation is a closed-form solution to the linear regression problem.
- It provides an exact solution to the model parameters *w* that minimize the squared error between the predicted and actual values.
- Since we have:

$$\mathbf{Y} = \mathbf{X} \cdot \mathbf{W} \tag{10}$$

• Multiply both sides by the inverse of X:

$$\mathbf{X}^{-1}.\mathbf{Y} = \mathbf{W} \tag{11}$$

- Normal equation is a closed-form solution to the linear regression problem.
- It provides an exact solution to the model parameters w that minimize the squared error between the predicted and actual values.
- Since we have:

$$\mathbf{Y} = \mathbf{X} \cdot \mathbf{W} \tag{10}$$

• Multiply both sides by the inverse of X:

$$\mathbf{X}^{-1} \cdot \mathbf{Y} = \mathbf{W} \tag{11}$$

Since X is not a square matrix, we can't find the inverse of X.

- Normal equation is a closed-form solution to the linear regression problem.
- It provides an exact solution to the model parameters w that minimize the squared error between the predicted and actual values.
- Since we have:

$$\mathbf{Y} = \mathbf{X} \cdot \mathbf{W} \tag{10}$$

• Multiply both sides by the inverse of X:

$$\mathbf{X}^{-1} \cdot \mathbf{Y} = \mathbf{W} \tag{11}$$

Since X is not a square matrix, we can't find the inverse of X.
We can use the following trick.

$$\mathbf{X}^{T}\mathbf{Y} = \mathbf{X}^{T}\mathbf{X}\mathbf{W}$$
(12)

September 20, 2024

75 / 78

- Normal equation is a closed-form solution to the linear regression problem.
- It provides an exact solution to the model parameters w that minimize the squared error between the predicted and actual values.
- Since we have:

$$\mathbf{Y} = \mathbf{X} \cdot \mathbf{W} \tag{10}$$

• Multiply both sides by the inverse of X:

$$\mathbf{X}^{-1}.\mathbf{Y} = \mathbf{W} \tag{11}$$

Since X is not a square matrix, we can't find the inverse of X.
We can use the following trick.

$$\mathbf{X}^{T}\mathbf{Y} = \mathbf{X}^{T}\mathbf{X}\mathbf{W}$$
(12)

• Now, multiply both sides by the inverse of **X**^T**X**:

$$(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}\mathbf{Y} = \mathbf{W}$$
(13)

September 20, 2024

75 / 78

Exercise 1

- What is the purpose of the normal equation in linear regression?
- What are the advantages of using gradient descent over normal equations for model optimization?
- How does the learning rate affect the convergence of gradient descent?
- What is the role of the loss function in training a machine learning model?
- Compare and contrast batch gradient descent, stochastic gradient descent, and mini-batch gradient descent.

Exercise 2

- Consider the following dataset with four points: (1, 2), (2, 4), (3, 5), (4, 4)
- Initial values: $w_0 = 1$, $w_1 = 0.5$, learning rate $\eta = 0.1$
- Use stochastic gradient descent to update w₀ and w₁ for one epoch (4 iterations)
- Complete the table below, showing your calculations for each iteration

Iteration	(x,y)	y'	y' - y	$(y'-y)^2$	$\frac{\partial L}{\partial w_0}$	$\frac{\partial L}{\partial w_1}$	New w ₀	New w ₁
1	(1, 2)							
2	(2, 4)							
3	(3, 5)							
4	(4, 4)							

- Remember: $y' = w_1 x + w_0$
- Use the formulas: $\frac{\partial L}{\partial w_0} = 2(y' y)$ and $\frac{\partial L}{\partial w_1} = 2x(y' y)$

• Update rule:
$$w_{new} = w_{old} - \eta \frac{\partial L}{\partial w}$$

イロト イヨト イヨト イヨト

September 20, 2024

æ

78 / 78

End