ECEN 227 - Introduction to Finite Automata and Discrete Mathematics

Dr. Mahmoud Nabil mnmahmoud@ncat.edu

North Carolina A & T State University

August 20, 2020

Talk Overview

Introduction

2 Set of sets

- 3 Union and Intersection
- 4 Set Complement
- 5 Set Difference and symmetric difference
- 6 Cartesian Product
 - Partitions

э

< □ > < 同 > < 回 > < 回 > < 回 >

Outline

Introduction

Set of sets

- 3 Union and Intersection
- 4 Set Complement
- 5 Set Difference and symmetric difference
- 6 Cartesian Product
- 7 Partitions

э

< □ > < 同 > < 回 > < 回 > < 回 >

Introduction

Set

A set is a collection of objects.

Elements

The objects in a set are called elements.

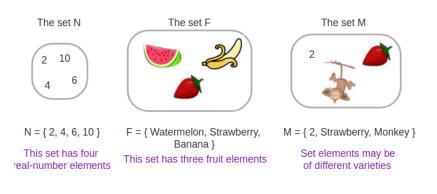
Ex.

$$A = \{1, 5, 3, 9\}$$

• We call the previous statement as roster notation.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Introduction



э

A D N A B N A B N A B N

Notes

• The order in which the elements are listed is unimportant. So the set A can also be expressed as:

$$\mathsf{A} = \{\mathsf{10}, \, \mathsf{6}, \, \mathsf{4}, \, \mathsf{2}\} = \{\mathsf{6}, \mathsf{4}, \mathsf{2}, \mathsf{10}\}$$

• Repeating an element does not change the set. So the set A can also be expressed as:

$$\mathsf{A} = \{ \ \mathsf{2,} \ \mathsf{2,} \ \mathsf{4,} \ \mathsf{6,} \ \mathsf{10} \}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Empty and Null Sets

Empty set

The set with no elements is called the empty set and is denoted by the symbol ϕ .

Null set

The empty set is sometimes referred to as the null set and can also be denoted by $\{\}$.

Ex.

•
$$B = \phi$$

Finite and Infinite Sets

Finite set

A finite set has a finite number of elements.

Infinite set

An infinite set has an infinite number of elements.

Ex.

- $B = \{1, 3, 5, \dots, 99\}$ finite set
- *C* = {3, 6, 9, 12,} infinite set

< □ > < 同 > < 回 > < 回 > < 回 >

Set Cardinality

Set Cardinality

The cardinality of a finite set A, denoted by |A|, is the number of elements in A.

Ex.

•
$$A = \{1, 3, 5, 9\}$$
 $|A| = 4$
• $B = \{1, 3, 5, \dots, 99\}$ $|B| = 50$

э

< □ > < 同 > < 回 > < 回 > < 回 >

Belonging

- The symbol ∈ is used to indicate that an element is in a set.
- The symbol \notin indicates that an element is not in a set.

Ex.

$$A = \{1, 4, 7\}$$

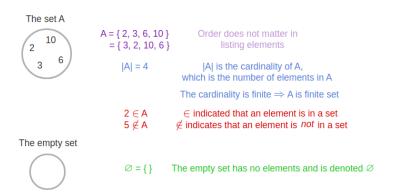
● 1 ∈ A

● 2 ∉ A

Note that, capital letters will be used as variables denoting sets, and lower case letters will be used for elements in the set.

(I) < (II) <

Example



The empty set has no elements and is denoted \varnothing .

э

A D N A B N A B N A B N

• N: is the set of natural numbers

3

・ロト ・四ト ・ヨト ・ヨト

• N: is the set of natural numbers

• $N = \{0, 1, 2, ...\}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

э

12 / 50

August 20, 2020

イロト イポト イヨト イヨト

Mathematical Sets

• N: is the set of natural numbers

- N = $\{0, 1, 2, ...\}$
- Z: is the set of integers

イロト 不得 トイヨト イヨト 二日

August 20, 2020

12 / 50

Mathematical Sets

• N: is the set of natural numbers

- $N = \{0, 1, 2, ...\}$
- Z: is the set of integers
 - $Z = \{..., -2, -1, 0, 1, 2, ...\}$

- N: is the set of natural numbers
 - $N = \{0, 1, 2, ...\}$
- Z: is the set of integers

• $Z = \{..., -2, -1, 0, 1, 2, ...\}$

• Q: is the set of rational numbers which can be expressed as a/b where b is not zero

イロト イポト イヨト イヨト 二日

- N: is the set of natural numbers
 - N ={0,1,2,...}
- Z: is the set of integers

• $Z = \{..., -2, -1, 0, 1, 2, ...\}$

• Q: is the set of rational numbers which can be expressed as a/b where b is not zero

イロト イポト イヨト イヨト 二日

August 20, 2020

12 / 50

• Q ={0,1/2,1/3,4/7,...}

- N: is the set of natural numbers
 - N ={0,1,2,...}
- Z: is the set of integers

• $Z = \{..., -2, -1, 0, 1, 2, ...\}$

• Q: is the set of rational numbers which can be expressed as a/b where b is not zero

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

August 20, 2020

12 / 50

• $Q = \{0, 1/2, 1/3, 4/7, ...\}$

• R: is the set of real numbers

- N: is the set of natural numbers
 - N ={0,1,2,...}
- Z: is the set of integers

• $Z = \{..., -2, -1, 0, 1, 2, ...\}$

• Q: is the set of rational numbers which can be expressed as a/b where b is not zero

• $Q = \{0, 1/2, 1/3, 4/7, ...\}$

• R: is the set of real numbers

• Q ={0, 1/2,
$$\pi$$
, -5/3, 2.6, $\sqrt{2}$, ...}

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

August 20, 2020 13 / 50

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

August 20, 2020 13 / 50

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

−3 ∈ Z⁺
 False
 0 ∈ Z⁺

−3 ∈ Z⁺
 False
 0 ∈ Z⁺

• False

- −3 ∈ Z⁺
 False
 0 ∈ Z⁺
 - False
- $5 \in R^+$

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 … のへで

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 … のへで August 20, 2020

13 / 50

Excercise

- -3 ∈ *Z*⁺ • False
- 0 ∈ *Z*⁺
 - False
- 5 ∈ R⁺
 - True

- −3 ∈ Z⁺
 False
 Z⁺
- $0 \in Z^+$

• False

- $5 \in R^+$
 - True
- $\sqrt{2} \in Q$

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ ― 圖 … のへで

- −3 ∈ Z⁺
 False
- $0 \in Z^+$

• False

- $5 \in R^+$
 - True
- $\sqrt{2} \in Q$
 - False

- 2

Venn Diagram

Venn Diagram A Venn diagram is a drawing illustration of the relationships between and among sets.

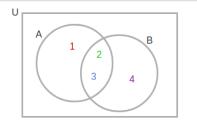
э

< □ > < 同 > < 回 > < 回 > < 回 >

Venn Diagram

Venn Diagram

A Venn diagram is a drawing illustration of the relationships between and among sets.



 $A = \{1, 2, 3\}$ $1 \in A \qquad 4 \notin A$ $2 \in A$ $3 \in A$ $B = \{2, 3, 4\}$

Note That

The universal set, usually denoted by the variable U, is a set that contains all elements in Venn Diagram.

• Consider writing the following set: A set of positive integers less than 100 and are primes

3

イロト イポト イヨト イヨト

- Consider writing the following set: A set of positive integers less than 100 and are primes
- A set is defined by specifying that the set includes all elements in a larger set that also satisfy certain conditions.

< □ > < 同 > < 回 > < 回 > < 回 >

- Consider writing the following set: A set of positive integers less than 100 and are primes
- A set is defined by specifying that the set includes all elements in a larger set that also satisfy certain conditions.

< □ > < 同 > < 回 > < 回 > < 回 >

- Consider writing the following set: A set of positive integers less than 100 and are primes
- A set is defined by specifying that the set includes all elements in a larger set that also satisfy certain conditions.

Ex.

$$C = \{x \in Z : 0 < x < 100 \text{ and } x \text{ is prime}\}$$

- The colon symbol ":" is read "such that".
- The description for C above would read:

"C includes all x in integers such that 0 < x < 100 and x is prime".

< □ > < □ > < □ > < □ > < □ > < □ >

Subset and Proper Subset

Subset $B \subseteq A$

If every element in B is also an element of A, then B is a subset of A, denoted as $B \subseteq A$.

Example

•
$$A = \{1, 2, 3, 4\}, B_1 = \{1, 2, 3\}, B_2 = \{1, 2, 3, 4\}, B_3 = \{1, 2, 3, 4, 5\}$$

Subset and Proper Subset

Subset $B \subseteq A$

If every element in B is also an element of A, then B is a subset of A, denoted as $B \subseteq A$.

Example

• $A = \{1, 2, 3, 4\}, B_1 = \{1, 2, 3\}, B_2 = \{1, 2, 3, 4\}, B_3 = \{1, 2, 3, 4, 5\}$

- 4 回 ト 4 ヨ ト 4 ヨ ト

August 20, 2020

16/50

• Does $B_1 \subseteq A$?

Subset and Proper Subset

Subset $B \subseteq A$

If every element in B is also an element of A, then B is a subset of A, denoted as $B \subseteq A$.

Example

• $A = \{1, 2, 3, 4\}, B_1 = \{1, 2, 3\}, B_2 = \{1, 2, 3, 4\}, B_3 = \{1, 2, 3, 4, 5\}$

- 4 回 ト 4 ヨ ト 4 ヨ ト

August 20, 2020

16/50

- Does $B_1 \subseteq A$?
- Does $B_2 \subseteq A$?

Subset $B \subseteq A$

If every element in B is also an element of A, then B is a subset of A, denoted as $B \subseteq A$.

Example

- $A = \{1, 2, 3, 4\}, B_1 = \{1, 2, 3\}, B_2 = \{1, 2, 3, 4\}, B_3 = \{1, 2, 3, 4, 5\}$
- Does $B_1 \subseteq A$?
- Does $B_2 \subseteq A$?
- Does $B_3 \subseteq A$?

・ 何 ト ・ ヨ ト ・ ヨ ト

Proper Subset $B \subset A$

If $B \subseteq A$ and there is an element of A that is not an element of B (i.e., $B \neq A$), then B is a proper subset of A, denoted as $B \subset A$.

•
$$A = \{1, 2, 3, 4\}, B_1 = \{1, 2, 3\}, B_2 = \{1, 2, 3, 4\}, B_3 = \{1, 2, 3, 4, 5\}$$

A (1) > A (2) > A (2)

Proper Subset $B \subset A$

If $B \subseteq A$ and there is an element of A that is not an element of B (i.e., $B \neq A$), then B is a proper subset of A, denoted as $B \subset A$.

• $A = \{1, 2, 3, 4\}, B_1 = \{1, 2, 3\}, B_2 = \{1, 2, 3, 4\}, B_3 = \{1, 2, 3, 4, 5\}$

・ 何 ト ・ ヨ ト ・ ヨ ト

August 20, 2020

17/50

• Does $B_1 \subset A$?

Proper Subset $B \subset A$

If $B \subseteq A$ and there is an element of A that is not an element of B (i.e., $B \neq A$), then B is a proper subset of A, denoted as $B \subset A$.

- $A = \{1, 2, 3, 4\}, B_1 = \{1, 2, 3\}, B_2 = \{1, 2, 3, 4\}, B_3 = \{1, 2, 3, 4, 5\}$
- Does $B_1 \subset A$?
- Does $B_2 \subset A$?

・ 何 ト ・ ヨ ト ・ ヨ ト

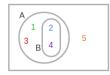
Proper Subset $B \subset A$

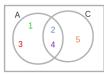
If $B \subseteq A$ and there is an element of A that is not an element of B (i.e., $B \neq A$), then B is a proper subset of A, denoted as $B \subset A$.

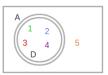
• $A = \{1, 2, 3, 4\}, B_1 = \{1, 2, 3\}, B_2 = \{1, 2, 3, 4\}, B_3 = \{1, 2, 3, 4, 5\}$

◆ 母 → < 注 → < 注 → August 20, 2020

- Does $B_1 \subset A$?
- Does $B_2 \subset A$?
- Does $B_3 \subset A$?







- $A = \{ 1, 2, 3, 4 \}$
 - $B = \{2, 4\}$
 - $\mathsf{B} \subseteq \mathsf{A}$
- $\mathbf{3} \in \mathbf{A}$ $\mathbf{3} \notin \mathbf{B}$
 - $\mathsf{B}\subset\mathsf{A}$

- A = { 1, 2, 3, 4} $C = \{2, 4, 5\}$
 - $\mathsf{C} \nsubseteq \mathsf{A}$
- $A = \{ 1, 2, 3, 4 \}$ $\mathsf{D} = \{1, 2, 3, 4\}$ $5 \in C \qquad 5 \notin A \qquad A \subseteq D, \ D \subseteq A \Rightarrow A = D$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

Introduction

2 Set of sets

- Union and Intersection
- 4 Set Complement
- 5 Set Difference and symmetric difference
- 6 Cartesian Product
- 7 Partitions

э

Set of sets

• It is possible that the elements of a set are themselves sets. Ex.

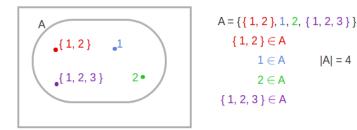
$$A = \{\{1,2\}, \phi, \{1,2,3\}, \{1\}\}$$

What are the elements in A and what is |A|?

< □ > < 同 > < 回 > < 回 > < 回 >

э

Set of Sets



The cardinality of set A = { $\{1, 2\}, 1, 2, \{1, 2, 3\}$ } is 4. The elements are $\{1, 2\}, 1, 2$, and $\{1, 2, 3\}$.

イロト 不得 トイヨト イヨト 二日

August 20, 2020

21 / 50

Consider the set A:

$$\textit{A} = \{\{1,2\}, \phi, \{1,2,3\}, \{1\}\}$$

Mark as True or False • $\{1,2\} \in A$

3

・ロト ・四ト ・ヨト ・ヨト

Consider the set A:

$$\textit{A} = \{\{1,2\}, \phi, \{1,2,3\}, \{1\}\}$$

Mark as True or False • $\{1,2\} \in A$

3

・ロト ・四ト ・ヨト ・ヨト

Consider the set A:

$$A = \{\{1,2\}, \phi, \{1,2,3\}, \{1\}\}$$

Mark as True or False • $\{1,2\} \in A$ • True

3

Consider the set A:

$$\textit{A} = \{\{1,2\}, \phi, \{1,2,3\}, \{1\}\}$$

・ロト ・四ト ・ヨト ・ヨト

3

August 20, 2020

22 / 50

Mark as True or False

{1,2} ∈ A
True
{1,2} ⊆ A

Consider the set A:

$$\textit{A} = \{\{1,2\}, \phi, \{1,2,3\}, \{1\}\}$$

・ロト ・四ト ・ヨト ・ヨト

3

August 20, 2020

22 / 50

Mark as True or False

{1,2} ∈ A
True
{1,2} ⊆ A

Consider the set A:

```
\textit{A} = \{\{1,2\}, \phi, \{1,2,3\}, \{1\}\}
```

Mark as True or False

• $\{1,2\} \in A$ • True • $\{1,2\} \subseteq A$ • False

3

< □ > < 同 > < 回 > < 回 > < 回 >

Consider the set A:

```
\textit{A} = \{\{1,2\}, \phi, \{1,2,3\}, \{1\}\}
```

< □ > < 同 > < 回 > < 回 > < 回 >

3

22 / 50

August 20, 2020

Mark as True or False

- {1,2} ∈ A
 True
 {1,2} ⊆ A
 - False
- $\{\{1,2\}\} \subseteq A$

Consider the set A:

```
\textit{A} = \{\{1,2\}, \phi, \{1,2,3\}, \{1\}\}
```

< □ > < 同 > < 回 > < 回 > < 回 >

3

22 / 50

August 20, 2020

Mark as True or False

- {1,2} ∈ A
 True
 {1,2} ⊆ A
 - False
- $\{\{1,2\}\} \subseteq A$

Consider the set A:

```
\textit{A} = \{\{1,2\}, \phi, \{1,2,3\}, \{1\}\}
```

Mark as True or False

• $\{1,2\} \in A$ • True • $\{1,2\} \subseteq A$ • False

•
$$\{\{1,2\}\} \subseteq A$$

True

3

Consider the set A:

```
\textit{A} = \{\{1,2\}, \phi, \{1,2,3\}, \{1\}\}
```

Mark as True or False

- $\{1,2\} \in A$ • True • $\{1,2\} \subseteq A$ • False • $\{\{1,2\}\} \subseteq A$
 - True

•
$$\{1\} \in A$$

3

< □ > < 同 > < 回 > < 回 > < 回 >

Consider the set A:

```
\textit{A} = \{\{1,2\}, \phi, \{1,2,3\}, \{1\}\}
```

Mark as True or False

- $\{1,2\} \in A$ • True • $\{1,2\} \subseteq A$ • False • $\{\{1,2\}\} \subseteq A$
 - True

•
$$\{1\} \in A$$

3

< □ > < 同 > < 回 > < 回 > < 回 >

Consider the set A:

```
\textit{A} = \{\{1,2\}, \phi, \{1,2,3\}, \{1\}\}
```

Mark as True or False

- $\{1,2\} \in A$ • True • $\{1,2\} \subseteq A$ • False • $\{\{1,2\}\} \subseteq A$
 - True

True

3

Consider the set A:

 $\textit{A} = \{\{1,2\}, \phi, \{1,2,3\}, \{1\}\}$

Mark as True or False

{1,2} ∈ A
True
{1,2} ⊆ A
False
{{1,2}} ⊆ A
True

3

Consider the set A:

 $\textit{A} = \{\{1,2\}, \phi, \{1,2,3\}, \{1\}\}$

Mark as True or False

{1,2} ∈ A
True
{1,2} ⊆ A
False
{{1,2}} ⊆ A
True

3

Consider the set A:

 $\textit{A} = \{\{1,2\}, \phi, \{1,2,3\}, \{1\}\}$

Mark as True or False

{1,2} ∈ A

 True
 {1,2} ⊆ A

 False
 {1,2} ⊆ A

 False
 {1,2} ⊆ A

 True

True

• False

3

Consider the set A:

```
\textit{A} = \{\{1,2\}, \phi, \{1,2,3\}, \{1\}\}
```

Mark as True or False

• $\{1,2\} \in A$ • True • $\{1,2\} \subseteq A$ • False • $\{\{1,2\}\} \subseteq A$ • True • $\{1,2\} \in A$ • True

• True

1 ∈ A

• False

• {1} ⊆ *A*

3

Consider the set A:

```
\textit{A} = \{\{1,2\}, \phi, \{1,2,3\}, \{1\}\}
```

イロト イヨト イヨト イヨト

3

22 / 50

August 20, 2020

Mark as True or False

• $\{1,2\} \in A$ • True • $\{1,2\} \subseteq A$ • False • $\{\{1,2\}\} \subseteq A$ • True

True

- 1 ∈ A
 - False
- {1} ⊆ *A*
 - False

Power Set

The power set of a set A, denoted P(A), is the set of all subsets of A. For example, if $A = \{1, 2, 3\}$, then:

< (17) > < (17) > <

August 20, 2020

23 / 50

Power Set

The power set of a set A, denoted P(A), is the set of all subsets of A. For example, if $A = \{1, 2, 3\}$, then:

 $\mathsf{P}(\mathsf{A}) = \{\phi, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$

< 🗇 🕨 < 🖃 🕨

Power Set

The power set of a set A, denoted P(A), is the set of all subsets of A. For example, if $A = \{1, 2, 3\}$, then:

$$\mathsf{P}(\mathsf{A}) = \{\phi, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$$

Ex.

 $A = \{ \bigcirc, \square, \triangle \}$ List all subsets: size 0 { Ø , size 1 { \bigcirc } , { \square } , { \triangle } , size 2 { \bigcirc, \square } , { \bigcirc, \triangle } , { \square, \triangle } , size 3 { $\bigcirc, \square, \triangle$ } = P(A) (power set of A) $P(A) = \{ \emptyset, \{ \bigcirc, \{ \bigcirc, \{ \triangle \}, \{ \bigcirc, \square \}, \{ \bigcirc, \triangle \}, \{ \bigcirc, \triangle \}, \{ \bigcirc, \triangle \}, \{ \bigcirc, \square \land, \triangle \} \}$

3

< □ > < 同 > < 回 > < 回 > < 回 >

Power Set

The power set of a set A, denoted P(A), is the set of all subsets of A. For example, if $A = \{1, 2, 3\}$, then:

$$\mathsf{P}(\mathsf{A}) = \{\phi, \{1\}, \{2\}, \{3\}, \{1,2\}, \{1,3\}, \{2,3\}, \{1,2,3\}\}$$

Ex.

 $\begin{array}{l} \mathsf{A} = \{ \bigcirc, \square, \triangle \} \\ \text{List all subsets:} \\ & \text{size 0} \quad \{ \varnothing \ , \\ & \text{size 1} \quad \{ \bigcirc \} \ , \ \{ \square \} \ , \ \{ \triangle \} \ , \\ & \text{size 2} \quad \{ \bigcirc, \square \} \ , \ \{ \bigcirc, \triangle \} \ , \ \{ \square, \triangle \} \ , \\ & \text{size 3} \quad \{ \bigcirc, \square, \triangle \} \ \} = \mathsf{P}(\mathsf{A}) \quad (\text{power set of } \mathsf{A}) \\ \mathsf{P}(\mathsf{A}) = \ \{ \varnothing, \{ \bigcirc, \{ \square \}, \{ \bigcirc, \square \} \ , \{ \bigcirc, \square \} \ , \{ \bigcirc, \triangle \} \ , \{ \square, \triangle \} \ , \{ \bigcirc, \square, \triangle \} \} \end{array}$

Can you guess the cardanality of the power set for a set of size n?

< □ > < □ > < □ > < □ > < □ > < □ >

Cardinality of Power Set

Theorem

Let A be a finite set of cardinality n. Then the cardinality of the power set of A is 2^n , or $|P(A)| = 2^n$.

Ex. What is the cardinality of $P(\{1, 2, 3, 4, 5, 6\})$?

(日) (四) (日) (日) (日)

3

25 / 50

August 20, 2020

イロト イポト イヨト イヨト

Excercise

Sets E through H are defined as follows.

•
$$E = \{x \in Z : x \text{ is odd}\}$$

•
$$F = \{x \in Z^+: x \le 7\}$$

•
$$G = \{x \in Z : x < 7\}$$

•
$$H = \{x \in Z^+: x \le 6\}$$

Indicate whether each statement is true or false.

Ex.

• $G \subseteq H$

イロト イヨト イヨト イヨト

3

25 / 50

August 20, 2020

Excercise

Sets E through H are defined as follows.

•
$$E = \{x \in Z : x \text{ is odd}\}$$

•
$$F = \{x \in Z^+: x \le 7\}$$

•
$$G = \{x \in Z : x < 7\}$$

•
$$H = \{x \in Z^+: x \le 6\}$$

Indicate whether each statement is true or false.

Ex.

• $G \subseteq H$

False

• $E \cup F \subseteq \mathbf{R}$

Sets E through H are defined as follows.

•
$$E = \{x \in Z : x \text{ is odd}\}$$

•
$$F = \{x \in Z^+: x \le 7\}$$

•
$$G = \{x \in Z : x < 7\}$$

•
$$H = \{x \in Z^+: x \le 6\}$$

Indicate whether each statement is true or false.

Ex.

• $G \subseteq H$

False

• True

• $\{\{0\}\} \subseteq P(G)$

3

< □ > < 同 > < 回 > < 回 > < 回 >

Sets E through H are defined as follows.

•
$$E = \{x \in Z : x \text{ is odd}\}$$

•
$$F = \{x \in Z^+: x \le 7\}$$

•
$$G = \{x \in Z : x < 7\}$$

•
$$H = \{x \in Z^+: x \le 6\}$$

Indicate whether each statement is true or false.

Ex.

- $G \subseteq H$
 - False
- $E \cup F \subseteq \mathbf{R}$
 - True
- $\{\{0\}\} \subseteq P(G)$
 - True

3

(日) (四) (日) (日) (日)

Sets E through H are defined as follows.

•
$$E = \{x \in Z : x \text{ is odd}\}$$

•
$$F = \{x \in Z^+: x \le 7\}$$

•
$$G = \{x \in Z : x < 7\}$$

•
$$H = \{x \in Z^+: x \le 6\}$$

Indicate whether each statement is true or false.

Ex.

- $G \subseteq H$
 - False
- $E \cup F \subseteq \mathbf{R}$
 - True
- $\{\{0\}\} \subseteq P(G)$
 - True

False

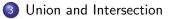
3

(日) (四) (日) (日) (日)

Outline

1 Introduction

2 Set of sets



Set Complement

5 Set Difference and symmetric difference

6 Cartesian Product

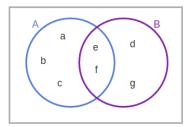
7 Partitions

3

イロト イヨト イヨト イヨト

Intersetion Operation

- The intersection of A and B, denoted A \cap B and read "A intersect B",
- It is the set of elements that are elements of both A and B.



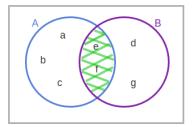
 $A = \{a, b, c, e, f\}$

< (17) > < (17) > <

August 20, 2020 27 / 50

Intersetion Operation

- The intersection of A and B, denoted A \cap B and read "A intersect B",
- It is the set of elements that are elements of both A and B.



A = { a, b, c, e, f } B = { d, e, f, g } A \cap B = { e, f }

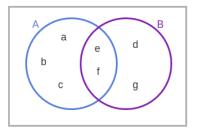
< (17) > < (17) > <

August 20, 2020

27 / 50

Union Operation

- \bullet The union of A and B, denoted A \cup B and read "A union B",
- It is the set of all elements that are elements of A or B.



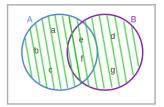
A = { a, b, c, e, f } B = { d, e, f, g }

< □ > < 同 > < 回 > < 回 > < 回 >

э

Union Operation

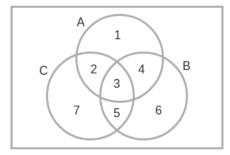
- \bullet The union of A and B, denoted A \cup B and read "A union B",
- It is the set of all elements that are elements of A or B.



A = { a, b, c, e, f } B = { d, e, f, g }

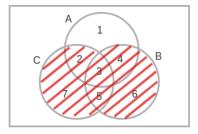
$$A \cup B = \{a, b, c, e, f, d, g\}$$

< □ > < 同 > < 回 > < 回 > < 回 >



A =	{ 1	, 2	, 3,	4}
B =	{3	, 4	, 5 ,	6}
C =	{2	, 3	, 5 ,	7}

August 20, 2020 29 / 50



$$A = \{1, 2, 3, 4\}$$

$$B = \{3, 4, 5, 6\}$$

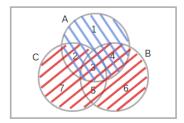
$$C = \{2, 3, 5, 7\}$$

$$A \cap (B \cup C)$$

$$B \cup C = \{2, 3, 4, 5, 6, 7\}$$

August 20, 2020 29 / 50

イロト イ部ト イヨト イヨト 二日



$$A = \{1, 2, 3, 4\}$$

$$B = \{3, 4, 5, 6\}$$

$$C = \{2, 3, 5, 7\}$$

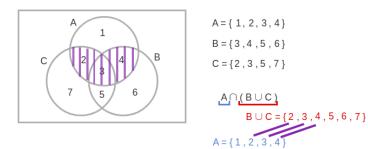
$$A \cap (B \cup C)$$

$$B \cup C = \{2, 3, 4, 5, 6, 7\}$$

$$A = \{1, 2, 3, 4\}$$

August 20, 2020 29 / 50

イロト イ部ト イヨト イヨト 二日



 $A \cap (B \cup C) = \{2, 3, 4\}$

Outline

Introduction

Set of sets

3 Union and Intersection

4 Set Complement

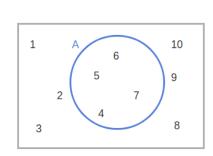
- 5 Set Difference and symmetric difference
- 6 Cartesian Product
- 7 Partitions

э

Set Complement

Ex.

- The complement of a set A, denoted \overline{A} , is the set of all elements in U that are not elements of A.
- An alternative definition of \overline{A} is U A.



 $U = \{ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 \}$

• □ ▶ • 4□ ▶ • Ξ ▶ •

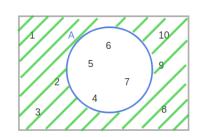
 $A = \{4, 5, 6, 7\}$

The universal set U is {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}. The set A is {4, 5, 6, 7}.

Set Complement

Ex.

- The complement of a set A, denoted \overline{A} , is the set of all elements in U that are not elements of A.
- An alternative definition of \overline{A} is U A.



< □ > < 同 > < 回 > < 回 > < 回 >

The complement of A is found by removing the elements of A from U. Therefore, the complement of A is {1, 2, 3, 8, 9, 10}.

Outline

1 Introduction

2 Set of sets

3 Union and Intersection

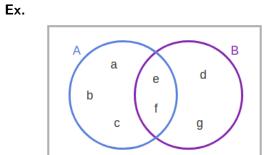
4 Set Complement

- 5 Set Difference and symmetric difference
 - 6 Cartesian Product
 - Partitions

э

Set Difference

• The difference between two sets A and B, denoted A - B, is the set of elements that are in A but not in B.



A = { a, b, c, e, f } B = { d, e, f, g }

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

33 / 50

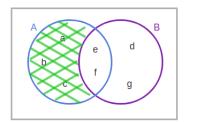
August 20, 2020

The set A is {a, b, c, e, f} and the set B is {d, e, f, g}.

Set Difference

• The difference between two sets A and B, denoted A - B, is the set of elements that are in A but not in B.

Ex.

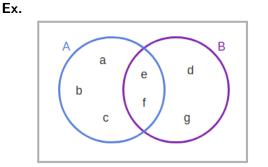


To determine A - B, find the elements that are in both A and B (e and f) and remove those elements from A. A - B = $\{a, b, c\}$.

(日) (四) (日) (日) (日)

Symmetric Difference

The symmetric difference between two sets A and B, denoted A ⊕ B, is the set of elements that are a member of exactly one of A and B but not both.



 $A = \{a, b, c, e, f\}$ $B = \{d, e, f, g\}$

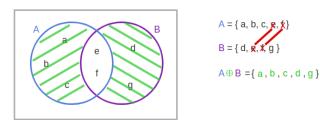
The set A is {a, b, c, e, f} and the set B is {d, e, f, g}.

August 20, 2020 34 / 50

Symmetric Difference

The symmetric difference between two sets A and B, denoted A ⊕ B, is the set of elements that are a member of exactly one of A and B but not both.

Ex.



To determine $A \oplus B$, remove the elements that are in both A and B (e and f) and take the remaining elements that are in A or B. A \oplus B = {a, b, c, d, g}

(日) (四) (日) (日) (日)

Notes on Set Difference

- The difference operation is not commutative. A B \neq B A.
- The symmetric difference is commutative. A \oplus B = B \oplus A.
- An alternative definition of the set difference operation is:

 $A - B = A \cap \overline{B}$

• An alternative definition of the symmetric difference operation is:

 $A \oplus B = (A - B) \cup (B - A)$

A (10) N (10) N (10)

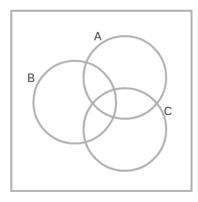
August 20, 2020

35 / 50

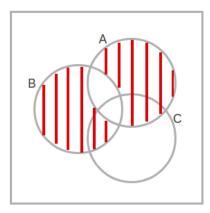
Operations Summary

Operation	Notation	Description	
Intersection	A∩B	$\{x : x \in A \text{ and } x \in B\}$	
Union	ΑυΒ	$\{x : x \in A \text{ or } x \in B \text{ or both }\}$	
Difference	A - B	$\{ x : x \in A \text{ and } x \notin B \}$	
Symmetric difference	A ⊕ B	$\{x : x \in A - B \text{ or } x \in B - A\}$	
Complement	Ā	$\{ X : X \notin A\}$	

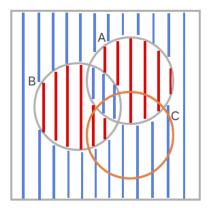
3



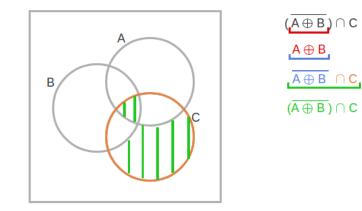
イロト イ部ト イヨト イヨト 二日



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <



Outline

Introduction

2 Set of sets

- 3 Union and Intersection
- 4 Set Complement
- 5 Set Difference and symmetric difference

6 Cartesian Product

7 Partitions

э

イロト イヨト イヨト イヨ

Ordered Pair

Ordered Pair

An ordered pair of elements is written (x, y) where the order of elements matters.

Notes

- $(x, y) \neq (y, x)$ unless x = y.
- By contrast, $\{x,\,y\}=\{y,\,x\}.$
- An ordered list of n items is called an ordered n-tuple.

< /⊒ ► < Ξ ► <

Ordered Pair

Ordered Pair

An ordered pair of elements is written (x, y) where the order of elements matters.

Notes

•
$$(x, y) \neq (y, x)$$
 unless $x = y$.

- By contrast, $\{x,\,y\}=\{y,\,x\}.$
- An ordered list of n items is called an ordered n-tuple.

Ex.

• (u, w, x, y, z) is an ordered 5-tuple.

A (1) > A (2) > A (2)

Cartesian product

Cartesian product

Cartesian product of A and B, denoted $A \times B$, is the set of all ordered pairs in which the first entry is in A and the second entry is in B.

Cartesian product

Cartesian product

Cartesian product of A and B, denoted $A \times B$, is the set of all ordered pairs in which the first entry is in A and the second entry is in B.

$$A \times B = \{ (a, b) : a \in A \text{ and } b \in B \}$$

Notes

- $A \times B$ is the same as $B \times A$, unless A = B.
- \bullet If A and B are finite sets, then $|A \times B| = |A|$. |B|

(日) (四) (日) (日) (日)

Finite Sets Cartesian Product

$$A = \{1, 2\} \qquad \begin{array}{c} B = \{a, b, c\} \\ a & b & c \\ 1 & (1, a) & (1, b) & (1, c) \\ 2 & (2, a) & (2, b) & (2, c) \end{array} \qquad \begin{array}{c} A \times B = \\ \{(1, a), (1, b), (1, c)\} \\ (2, a), (2, b), (2, c) \end{array}$$

イロト イポト イミト イミト 一日

Finite Sets Cartesian Product

$$A = \{1, 2\}$$

$$B = \{a, b, c\} a (a, 1) (a, 2)$$

$$b (b, 1) (b, 2)$$

$$c (c, 1) (c, 2)$$

$$B \times A$$

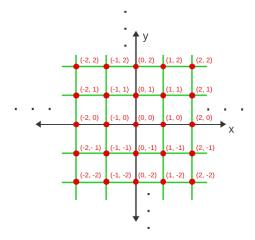
$$\{(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)\}$$

August 20, 2020 41 / 50

イロト イポト イミト イミト 一日

InFinite Sets Cartesian Product

 $Z \times Z = \{ (x, y): x \text{ and } y \text{ are integers } \}$



The set Z imes Z forms an infinite grid of points when plotted on the x-y plane.

August 20, 2020 42 / 50

< E.

э

Self Cartesian Product

•
$$A \times A \equiv A^2$$
 or more generally:

$$A^k = \underbrace{A \times \cdots \times A}_{\text{k times}}$$

Ex.

• if $A = \{0, 1\}$ calculate A^3

3

Self Cartesian Product

•
$$A \times A \equiv A^2$$
 or more generally:

$$A^k = \underbrace{A \times \cdots \times A}_{\text{k times}}$$

Ex.

イロト イ部ト イヨト イヨト 二日

Strings

• If A is a set of symbols or characters, then Aⁿ can be written without parentheses and commas (i.e., called string).

(日) (四) (日) (日) (日)

3

44 / 50

August 20, 2020

Ex.

Strings

• If A is a set of symbols or characters, then Aⁿ can be written without parentheses and commas (i.e., called string).

(日) (四) (日) (日) (日)

August 20, 2020

44 / 50

Ex.

- $\{0,1\}^3$ is 3-bit binary string "000" to "111".
- $\{0,1\}^n$ is n-bit binary string.

Given the following sets express the result as strings.

- A = {a}
- $B = \{b, c\}$
- C = {a, b, d}

Questions

• $A \times (B \cup C)$

- 20

イロン イヨン イヨン

(日) (四) (日) (日) (日)

3

45 / 50

August 20, 2020

Excercise

Given the following sets express the result as strings.

- $A = \{a\}$
- $B = \{b, c\}$
- C = {a, b, d}

Questions

A × (B ∪ C)

 {aa, ab, ac, ad}

 (A × B) ∪ (A × C)

Given the following sets express the result as strings.

- $A = \{a\}$
- $B = \{b, c\}$
- C = {a, b, d}

Questions

A× (B∪C)
{aa, ab, ac, ad}
(A×B)∪(A×C)
{aa, ab, ac, ad}
P(A×B)

3

< □ > < □ > < □ > < □ > < □ > < □ >

Given the following sets express the result as strings.

- $A = \{a\}$
- $B = \{b, c\}$
- C = {a, b, d}

Questions

A× (B∪C)

{aa, ab, ac, ad}

(A×B) ∪ (A×C)

{aa, ab, ac, ad}

P(A×B)

{ φ, {ab}, {ac}, {ab,ac} }

э

・ 何 ト ・ ヨ ト ・ ヨ ト

Outline

1 Introduction

Set of sets

- 3 Union and Intersection
- 4 Set Complement
- 5 Set Difference and symmetric difference

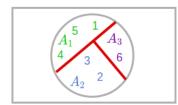
6 Cartesian Product

э

イロト イヨト イヨト イヨト

Partitions

Partitions



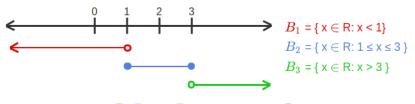
$$A = \{1, 2, 3, 4, 5, 6\}$$

$$A_1 = \{1, 4, 5\}$$

$$A_2 = \{2, 3\}$$

$$A_3 = \{6\}$$

 $A_1\,A_2$ and A_3 form a partition of A



 $B_1 B_2$ and B_3 form a partition of R

э

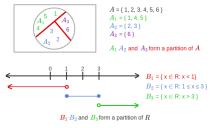
(日) (四) (日) (日) (日)

Partitions

Disjoint Sets

Two sets, A and B, are said to be disjoint if their intersection is empty $(A \cap B = \phi)$.

- $A_1, A_2, ..., A_n$ is a partition for a non-empty set A if all of the following conditions hold:
- $A = A_1 \cup A_2 \cup \cdots \cup A_n$.
- For all i, $A_i \subseteq A$.
- For all i, $A_i \neq \phi$
- A_1, A_2, \ldots, A_n are pairwise disjoint.



< □ > < □ > < □ > < □ > < □ > < □ >

August 20, 2020

48 / 50

Let sets A through F be defined as follows.

- B = {111}
- C = {0x : x \in {0,1}²}
- $D = \{01x : x \in \{0,1\}\}$
- $\mathsf{E} = \{1x : x \in \{0,1\}^2\}$
- $\mathsf{F} = \{00x : x \in \{0,1\}\}$

What are the partitions of the set $\{0,1\}^3$ using one or more of the sets defined above?

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Let sets A through F be defined as follows.

- B = {111}
- C = {0x : x \in {0,1}²}
- $D = \{01x : x \in \{0,1\}\}$
- $\mathsf{E} = \{1x : x \in \{0,1\}^2\}$
- $\mathsf{F} = \{00x : x \in \{0,1\}\}$

What are the partitions of the set $\{0,1\}^3$ using one or more of the sets defined above?

Sol:

- C, E
- E, D, F

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

August 20, 2020

50 / 50

