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Introduction

Introduction

Set

A set is a collection of objects.

Elements

The objects in a set are called elements.

Ex.

A = {1,5,3,9}

We call the previous statement as roster notation.

August 20, 2020 4 / 50



Introduction

Introduction

August 20, 2020 5 / 50



Introduction

Notes

The order in which the elements are listed is unimportant. So the set
A can also be expressed as:

A = {10, 6, 4, 2} = {6,4,2,10}

Repeating an element does not change the set. So the set A can also
be expressed as:

A = { 2, 2, 4, 6, 10}
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Introduction

Empty and Null Sets

Empty set

The set with no elements is called the empty set and is denoted by the
symbol φ.

Null set

The empty set is sometimes referred to as the null set and can also be
denoted by {}.

Ex.

A = {}

B = φ
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Introduction

Finite and Infinite Sets

Finite set

A finite set has a finite number of elements.

Infinite set

An infinite set has an infinite number of elements.

Ex.

B = {1,3,5, . . . ,99} finite set

C = {3,6,9,12, ....} infinite set
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Introduction

Set Cardinality

Set Cardinality

The cardinality of a finite set A, denoted by ∣A∣, is the number of elements
in A.

Ex.

A = {1,3,5,9} ∣A∣ = 4

B = {1,3,5, . . . ,99} ∣B ∣ = 50

August 20, 2020 9 / 50



Introduction

Belonging

The symbol ∈ is used to indicate that an element is in a set.

The symbol ∉ indicates that an element is not in a set.

Ex.

A = {1,4,7}

1 ∈ A

2 ∉ A

Note that, capital letters will be used as variables denoting sets, and lower
case letters will be used for elements in the set.
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Example
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Introduction

Mathematical Sets

N: is the set of natural numbers

N ={0,1,2, ...}

Z: is the set of integers

Z ={...,−2,−1,0,1,2, ...}

Q: is the set of rational numbers which can be expressed as a/b
where b is not zero

Q ={0,1/2,1/3,4/7, ...}

R: is the set of real numbers

Q ={0,1/2, π,−5/3,2.6,
√

2, ...}

August 20, 2020 12 / 50



Introduction

Mathematical Sets

N: is the set of natural numbers
N ={0,1,2, ...}

Z: is the set of integers

Z ={...,−2,−1,0,1,2, ...}

Q: is the set of rational numbers which can be expressed as a/b
where b is not zero

Q ={0,1/2,1/3,4/7, ...}

R: is the set of real numbers

Q ={0,1/2, π,−5/3,2.6,
√

2, ...}

August 20, 2020 12 / 50



Introduction

Mathematical Sets

N: is the set of natural numbers
N ={0,1,2, ...}

Z: is the set of integers

Z ={...,−2,−1,0,1,2, ...}

Q: is the set of rational numbers which can be expressed as a/b
where b is not zero

Q ={0,1/2,1/3,4/7, ...}

R: is the set of real numbers

Q ={0,1/2, π,−5/3,2.6,
√

2, ...}

August 20, 2020 12 / 50



Introduction

Mathematical Sets

N: is the set of natural numbers
N ={0,1,2, ...}

Z: is the set of integers
Z ={...,−2,−1,0,1,2, ...}

Q: is the set of rational numbers which can be expressed as a/b
where b is not zero

Q ={0,1/2,1/3,4/7, ...}

R: is the set of real numbers

Q ={0,1/2, π,−5/3,2.6,
√

2, ...}

August 20, 2020 12 / 50



Introduction

Mathematical Sets

N: is the set of natural numbers
N ={0,1,2, ...}

Z: is the set of integers
Z ={...,−2,−1,0,1,2, ...}

Q: is the set of rational numbers which can be expressed as a/b
where b is not zero

Q ={0,1/2,1/3,4/7, ...}

R: is the set of real numbers

Q ={0,1/2, π,−5/3,2.6,
√

2, ...}

August 20, 2020 12 / 50



Introduction

Mathematical Sets

N: is the set of natural numbers
N ={0,1,2, ...}

Z: is the set of integers
Z ={...,−2,−1,0,1,2, ...}

Q: is the set of rational numbers which can be expressed as a/b
where b is not zero

Q ={0,1/2,1/3,4/7, ...}

R: is the set of real numbers

Q ={0,1/2, π,−5/3,2.6,
√

2, ...}

August 20, 2020 12 / 50



Introduction

Mathematical Sets

N: is the set of natural numbers
N ={0,1,2, ...}

Z: is the set of integers
Z ={...,−2,−1,0,1,2, ...}

Q: is the set of rational numbers which can be expressed as a/b
where b is not zero

Q ={0,1/2,1/3,4/7, ...}

R: is the set of real numbers

Q ={0,1/2, π,−5/3,2.6,
√

2, ...}

August 20, 2020 12 / 50



Introduction

Mathematical Sets

N: is the set of natural numbers
N ={0,1,2, ...}

Z: is the set of integers
Z ={...,−2,−1,0,1,2, ...}

Q: is the set of rational numbers which can be expressed as a/b
where b is not zero

Q ={0,1/2,1/3,4/7, ...}

R: is the set of real numbers
Q ={0,1/2, π,−5/3,2.6,

√

2, ...}

August 20, 2020 12 / 50



Introduction

Excercise

−3 ∈ Z+

False

0 ∈ Z+

False

5 ∈ R+

True

√

2 ∈ Q

False
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Introduction

Venn Diagram

Venn Diagram

A Venn diagram is a drawing illustration of the relationships between and
among sets.

Note That

The universal set, usually denoted by the variable U, is a set that contains
all elements in Venn Diagram.
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Introduction

Set Builder Notation

Consider writing the following set: A set of positive integers less than
100 and are primes

A set is defined by specifying that the set includes all elements in a
larger set that also satisfy certain conditions.

Ex.

C = {x ∈ Z ∶ 0 < x < 100 and x is prime}

The colon symbol ”:” is read ”such that”.

The description for C above would read:

”C includes all x in integers such that 0 < x < 100 and x is prime”.
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Introduction

Subset and Proper Subset

Subset B ⊆ A

If every element in B is also an element of A, then B is a subset of A,
denoted as B ⊆ A.

Example

A = {1,2,3,4}, B1={1,2,3}, B2={1,2,3,4}, B3 = {1,2,3,4,5}

Does B1 ⊆ A ?

Does B2 ⊆ A ?

Does B3 ⊆ A ?
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Subset and Proper Subset

Proper Subset B ⊂ A

If B ⊆ A and there is an element of A that is not an element of B (i.e.,
B ≠ A), then B is a proper subset of A, denoted as B ⊂ A.
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Subset and Proper Subset
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Set of sets

Set of sets

It is possible that the elements of a set are themselves sets.

Ex.

A = {{1,2}, φ,{1,2,3},{1}}

What are the elements in A and what is ∣A∣?
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Set of Sets
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Set of sets

Excercise

Consider the set A:

A = {{1,2}, φ,{1,2,3},{1}}

Mark as True or False

{1,2} ∈ A

True

{1,2} ⊆ A

False

{{1,2}} ⊆ A

True

{1} ∈ A

True

1 ∈ A

False

{1} ⊆ A

False
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Set of sets

Power Set

Power Set

The power set of a set A, denoted P(A), is the set of all subsets of A. For
example, if A = {1,2,3}, then:

P(A) = {φ,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}

Ex.

Can you guess the cardanality of the power set for a set of size n?
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Set of sets

Cardinality of Power Set

Theorem

Let A be a finite set of cardinality n. Then the cardinality of the power set
of A is 2n, or ∣P(A)∣ = 2n.

Ex. What is the cardinality of P({1, 2, 3, 4, 5, 6})?
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Set of sets

Excercise

Sets E through H are defined as follows.

E = {x ∈ Z : x is odd}
F = {x ∈ Z+: x ≤ 7}
G = {x ∈ Z : x < 7}
H = {x ∈ Z+: x ≤ 6}

Indicate whether each statement is true or false.
Ex.

G ⊆ H

False

E ∪ F ⊆ R
True

{{0}} ⊆ P(G)
True

{0} ⊆ P(G)
False
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Outline

1 Introduction

2 Set of sets
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Union and Intersection

Intersetion Operation

The intersection of A and B, denoted A ∩ B and read ”A intersect B”,

It is the set of elements that are elements of both A and B.
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Union and Intersection

Union Operation

The union of A and B, denoted A ∪ B and read ”A union B”,

It is the set of all elements that are elements of A or B.
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Set Complement

Set Complement

The complement of a set A, denoted A, is the set of all elements in U
that are not elements of A.

An alternative definition of A is U - A.

Ex.
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Set Difference and symmetric difference

Set Difference

The difference between two sets A and B, denoted A - B, is the set of
elements that are in A but not in B.

Ex.
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Set Difference and symmetric difference

Symmetric Difference

The symmetric difference between two sets A and B, denoted A ⊕ B,
is the set of elements that are a member of exactly one of A and B
but not both.

Ex.
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Symmetric Difference
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Set Difference and symmetric difference

Notes on Set Difference

The difference operation is not commutative. A - B ≠ B - A.

The symmetric difference is commutative. A ⊕ B = B ⊕ A.

An alternative definition of the set difference operation is:

A − B = A ∩ B

An alternative definition of the symmetric difference operation is:

A ⊕ B = ( A - B ) ∪ ( B - A )
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Set Difference and symmetric difference

Operations Summary
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Cartesian Product

Ordered Pair

Ordered Pair

An ordered pair of elements is written (x, y) where the order of elements
matters.

Notes

(x, y) ≠ (y, x) unless x = y.

By contrast, {x, y} = {y, x}.

An ordered list of n items is called an ordered n-tuple.

Ex.

(w, x, y, z) is an ordered 4-tuple.
(u, w, x, y, z) is an ordered 5-tuple.
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Cartesian Product

Cartesian product

Cartesian product

Cartesian product of A and B, denoted A x B, is the set of all ordered
pairs in which the first entry is in A and the second entry is in B.

A x B = { (a, b) : a ∈ A and b ∈ B }

Notes

A x B is the same as B x A, unless A = B.

If A and B are finite sets, then ∣A x B∣ = ∣A∣ . ∣B∣
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Finite Sets Cartesian Product
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Cartesian Product

InFinite Sets Cartesian Product
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Cartesian Product

Self Cartesian Product

A × A ≡ A2 or more generally:

Ak = A × ⋅ ⋅ ⋅ ×A
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k times

Ex.

if A = {0, 1} calculate A3

A3 = {0, 1}3 = { (0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1,
0, 1), (1, 1, 0), (1, 1, 1) }
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Cartesian Product

Strings

If A is a set of symbols or characters, then An can be written without
parentheses and commas (i.e., called string).

Ex.

{0,1}3 is 3-bit binary string ”000” to ”111”.

{0,1}n is n-bit binary string.
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Cartesian Product

Excercise

Given the following sets express the result as strings.

A = {a}
B = {b, c}
C = {a, b, d}

Questions

A × (B ∪ C)

{aa, ab, ac, ad}
(A ×B) ∪ (A × C)

{aa, ab, ac, ad}
P(A ×B)

{ φ, {ab}, {ac}, {ab,ac} }
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Partitions
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Partitions

Partitions

Disjoint Sets

Two sets, A and B, are said to be disjoint if their intersection is empty
(A ∩ B = φ).

A1,A2, . . . ,An is a partition for a non-empty set A if all of the
following conditions hold:

A = A1 ∪A2 ∪ ⋅ ⋅ ⋅ ∪An.

For all i, Ai ⊆ A.

For all i, Ai ≠ φ

A1,A2, . . . ,An are pairwise disjoint.
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Partitions

Excercise

Let sets A through F be defined as follows.

A = {000}

B = {111}

C = {0x ∶ x ∈ {0,1}2
}

D = {01x ∶ x ∈ {0,1}}

E = {1x ∶ x ∈ {0,1}2
}

F = {00x ∶ x ∈ {0,1}}

What are the partitions of the set {0,1}3 using one or more of the sets
defined above?

Sol:

C, E

E, D, F
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