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Mathematical definitions

Even and Odd Integers

Even Integer

An integer x is even if there is an integer k such that x = 2k

Ex.

0 = 2*0

2 = 2*1

4 = 2*2

Odd Integer

An integer x is odd if there is an integer k such that x = 2k+1.

Ex.

1 = 2*0+1

3 = 2*1+1

5 = 2*2+1
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Mathematical definitions

Equality and Inequality
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Mathematical definitions

Negation of the inequalities
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Mathematical definitions

Divides

Divides

An integer x divides an integer y if and only if y = kx, for some integer k.

Ex

5 divides 20, in other words 20=5*4

The fact that x divides y is denoted x ∣ y . If x does not divide y, then that
fact is denoted x ∤ y .

If x divides y, then y is said to be a multiple of x, and x is a factor or
divisor of y.
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Mathematical definitions

Prime and Composite Numbers

Prime Numbers

An integer n is prime if and only if n > 1, and for every positive integer m,
if m divides n, then m = 1 or m = n.

Ex.

n=7

n=13

Combosite Numbers

An integer n is composite if and only if n > 1, and there is an integer m
such that 1 < m < n and m divides n.

Ex.

n=10 , m = 2 or m = 5
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Introduction to proofs

Introduction

Theorem

A theorem is a statement that can be proven to be true.

Axiom

It is a statement which is accepted without question, and which has no
proof.

Proof

A proof is of a series of steps, each of which follows logically from
assumptions, axioms, or from previously proven statements, whose final
step should result in the statement or the theorem being proven.
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Introduction to proofs

Introduction

One of the hardest parts of writing proofs is knowing where to start.

Proofs have common patterns, we will cover:

Proof by Exhaustion.
Proof by Counter Example.
Direct Proof.
Proof by Contrapositive.
Proof by Contradiction.
Proof by Cases.

Coming up with proofs requires trial and error, even for experienced
mathematicians.
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Introduction to proofs Notes on Proofs

How to start a proof?

Usually proofs start with One or more assumption then some
statements to show the proof goal.

Assumptions can be inferred from the theorem text.

Goal can also be inferred from the theorem text.

Restating the assumption and the goal is the first step in building a
proof.
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Introduction to proofs Notes on Proofs

Example

The average of two real numbers is less than or equal to at least one
of the two numbers.

Assumption: Let x and y are two real numbers.
Goal: (x+y)/2 ≤ x or (x+y)/2 ≤ y.

The difference of two odd integers is even.

Assumption: Let x = 2k+1, y=2j+1
Goal: (x-y) is even.

Among any two consecutive integers, there is an odd number and an
even number.

Assumption: Let x is an integer
Goal: x is even and x+1 is odd or x is odd and x+1 is even
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Introduction to proofs Simple Proof

Example

Theorem

Every positive integer is less than or equal to its square.

Proof.

Let x be an integer x > 0. Name a generic object in the domain and state given assumptions

about the object

Since x is an integer and x > 0, then x ≥ 1. State reasoning in complete sentence

Since x > 0, we can multiply both sides of the inequality by x to get:

x ∗ x ≥ 1 ∗ x .

Simplify the expression we get

x2 ≥ x .
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Proof by Exhaustion

Prove by Exhaustion

For universal statements, if the domain is small, it may be easiest to
prove the statement by checking each element individually.

Theorem

for n ∈ {−1,0,1} we have n2 = ∣n∣

Proof.

n = −1 ∶ (−1)2 = 1 = ∣ − 1∣.

n = 0 ∶ (0)2 = 0 = ∣0∣.

n = 1 ∶ (1)2 = 1 = ∣1∣.

ECEN 227 September 17, 2020 16 / 46



Proof by Exhaustion

Prove by Exhaustion

For universal statements, if the domain is small, it may be easiest to
prove the statement by checking each element individually.

Theorem

for n ∈ {−1,0,1} we have n2 = ∣n∣

Proof.

n = −1 ∶ (−1)2 = 1 = ∣ − 1∣.

n = 0 ∶ (0)2 = 0 = ∣0∣.

n = 1 ∶ (1)2 = 1 = ∣1∣.

ECEN 227 September 17, 2020 16 / 46



Proof by Exhaustion

Prove by Exhaustion

For universal statements, if the domain is small, it may be easiest to
prove the statement by checking each element individually.

Theorem

for n ∈ {−1,0,1} we have n2 = ∣n∣

Proof.

n = −1 ∶ (−1)2 = 1 = ∣ − 1∣.

n = 0 ∶ (0)2 = 0 = ∣0∣.

n = 1 ∶ (1)2 = 1 = ∣1∣.

ECEN 227 September 17, 2020 16 / 46



Proof by Exhaustion

Excercise

Proof by exhaustion

For every integer n such that 0 ≤ n < 4, 2(n+2) > 3n.

When n = 0, 2(0+2) = 4 and 30 = 1. 4 > 1.
When n = 1, 2(1+2) = 8 and 31 = 3. 8 > 3.
When n = 2, 2(2+2) = 16 and 32 = 9. 16 > 9.
When n = 3 2(3+2) = 32 and 33 = 27. 32 > 27.
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Proof by Counter Example

Counter example

A counterexample is an assignment of values to variables.

A counterexample can be used to proof/disproof a logical statement.

Ex

” If n is an integer greater than 1, then (1.1)n < n10 ”.

For n = 686, the statement is false because

(1.1)686 > 68610
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Conditional statements proof/disproof

A counterexample can be used to disproof a conditional statement
must satisfy all the hypotheses and contradict the conclusion.

Proofing conditional statement can use proof by exhaustion or other
mathematical derivation to reach the goal.

Ex.

Theorem: For any real number x, if x ≥ 0 and x < 1, then x2 < x .

Counter example: x = 0, satisfy the hypotheses and contradict the
conclusion

Theorem: if x is positive integer, then 1/x < x .

Counter example: x = 1, satisfy the hypotheses and contradict the
conclusion
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Universal Statement Proof/Disproof

A counterexample can be used to disproof a universal statement.

Proofing universal statement can use proof by exhaustion or other
mathematical derivation to reach the goal.

Ex.

Theorem: All primes are odd.

Counter example: x = 2, prime but not odd
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Existential Statement Proof

A counterexample can be used to proof a existential statement, this
method called constructive proof of existence.

Ex.

Theorem: There is an integer that can be written as the sum of the
squares of two positive integers in two different ways.

50 = 12 + 72

Theorem: There are two consecutive positive integers whose product
is less than their sum.

1 and 2
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Existential Statement DisProof

Disproofing existential statement can use proof by exhaustion or other
mathematical derivation to reach the negation of the goal

Ex.

Theorem: There is a real number whose square is negative.

Disproof Goal: It is not true that there is a real number whose square
is negative.
Disproof Goal: Every real number does not have a negative square.
Disproof Goal: Every real number have a square that is greater than or
equal zero.

ECEN 227 September 17, 2020 23 / 46



Existential Statement DisProof

Disproofing existential statement can use proof by exhaustion or other
mathematical derivation to reach the negation of the goal

Ex.

Theorem: There is a real number whose square is negative.

Disproof Goal: It is not true that there is a real number whose square
is negative.

Disproof Goal: Every real number does not have a negative square.
Disproof Goal: Every real number have a square that is greater than or
equal zero.

ECEN 227 September 17, 2020 23 / 46



Existential Statement DisProof

Disproofing existential statement can use proof by exhaustion or other
mathematical derivation to reach the negation of the goal

Ex.

Theorem: There is a real number whose square is negative.

Disproof Goal: It is not true that there is a real number whose square
is negative.
Disproof Goal: Every real number does not have a negative square.

Disproof Goal: Every real number have a square that is greater than or
equal zero.

ECEN 227 September 17, 2020 23 / 46



Existential Statement DisProof

Disproofing existential statement can use proof by exhaustion or other
mathematical derivation to reach the negation of the goal

Ex.

Theorem: There is a real number whose square is negative.

Disproof Goal: It is not true that there is a real number whose square
is negative.
Disproof Goal: Every real number does not have a negative square.
Disproof Goal: Every real number have a square that is greater than or
equal zero.

ECEN 227 September 17, 2020 23 / 46



Excercise

Find a counterexample to show that each of the statements is false.

Every month of the year has 30 or 31 days.

February

If n is an integer and n2 is divisible by 4, then n is divisible by 4.

n = 2

For every positive integer x, x3 < 2x

x = 3
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Excercise

Find a counterexample to show that each of the statements is false.

Every month of the year has 30 or 31 days.

February

If n is an integer and n2 is divisible by 4, then n is divisible by 4.

n = 2

For every positive integer x, x3 < 2x

x = 3

ECEN 227 September 17, 2020 24 / 46



Excercise

Find a counterexample to show that each of the statements is false.

Every month of the year has 30 or 31 days.

February

If n is an integer and n2 is divisible by 4, then n is divisible by 4.

n = 2

For every positive integer x, x3 < 2x

x = 3

ECEN 227 September 17, 2020 24 / 46



Excercise

Find a counterexample to show that each of the statements is false.

Every month of the year has 30 or 31 days.

February

If n is an integer and n2 is divisible by 4, then n is divisible by 4.

n = 2

For every positive integer x, x3 < 2x

x = 3

ECEN 227 September 17, 2020 24 / 46



Excercise

Find a counterexample to show that each of the statements is false.

Every month of the year has 30 or 31 days.

February

If n is an integer and n2 is divisible by 4, then n is divisible by 4.

n = 2

For every positive integer x, x3 < 2x

x = 3

ECEN 227 September 17, 2020 24 / 46



Excercise

Find a counterexample to show that each of the statements is false.

Every month of the year has 30 or 31 days.

February

If n is an integer and n2 is divisible by 4, then n is divisible by 4.

n = 2

For every positive integer x, x3 < 2x

x = 3

ECEN 227 September 17, 2020 24 / 46



Direct Proof

Outline

1 Mathematical definitions

2 Introduction to proofs

3 Proof by Exhaustion

4 Proof by Counter Example

5 Direct Proof

6 Proof by Contrapositive

7 Indirect Proof

8 Proof by Cases

ECEN 227 September 17, 2020 25 / 46



Direct Proof

Direct Proof

Used to proof Conditional Statements such as p → c are correct.

Direct Proof

In a direct proof of a conditional statement, the hypothesis p is assumed to
be true and the conclusion c is proven as a direct result of the assumption.
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Direct Proof

Direct Proof (Example 1)

Theorem

if x is an odd integer and y is an even integer then:

x + y is odd

Proof.

Assume:
∵ x = 2j+1

∵ y = 2k
Then:
∴ x + y = 2j+1+2k
∴ x + y = 2(j+k)+1
∴ x + y = 2m+1 m is an integer = j+k

∴ x + y is odd
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Direct Proof

Direct Proof (Example 2)

Theorem

if r and s are rational numbers then:

r + s is a rational number.

Proof.

Assume:
∵ r = a

b a and b are integers b ≠ 0

∵ s = c
d c and d are integers d ≠ 0

Then:
∴ r + s= a

b + c
d

∴ r + s= (ad+cb)
db

∴ r+s = j
k j= ad + cb and k = db are integers k ≠ 0

∴ r+s is rational
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Direct Proof

Direct Proof (Example 3)

Theorem

if x and y are positive real numbers then:

x
y +

y
x ≥ 2

Proof.

Assume:
∵ x and y are real numbers

Then:
∴ x − y is also a real number.
∴ (x − y)2 ≥ 0, the square of any real number is greater than or equal to 0.

∴ x2 − 2xy + y2 ≥ 0
∴ x

y − 2 + y
x ≥ 0 divide both sides of the inequality by xy

∴ x
y +

y
x ≥ 2 Adding 2 to both sides

ECEN 227 September 17, 2020 29 / 46



Direct Proof

Direct Proof (Example 3)

Theorem

if x and y are positive real numbers then:

x
y +

y
x ≥ 2

Proof.

Assume:
∵ x and y are real numbers
Then:
∴ x − y is also a real number.

∴ (x − y)2 ≥ 0, the square of any real number is greater than or equal to 0.

∴ x2 − 2xy + y2 ≥ 0
∴ x

y − 2 + y
x ≥ 0 divide both sides of the inequality by xy

∴ x
y +

y
x ≥ 2 Adding 2 to both sides

ECEN 227 September 17, 2020 29 / 46



Direct Proof

Direct Proof (Example 3)

Theorem

if x and y are positive real numbers then:

x
y +

y
x ≥ 2

Proof.

Assume:
∵ x and y are real numbers
Then:
∴ x − y is also a real number.
∴ (x − y)2 ≥ 0, the square of any real number is greater than or equal to 0.

∴ x2 − 2xy + y2 ≥ 0
∴ x

y − 2 + y
x ≥ 0 divide both sides of the inequality by xy

∴ x
y +

y
x ≥ 2 Adding 2 to both sides

ECEN 227 September 17, 2020 29 / 46



Direct Proof

Direct Proof (Example 3)

Theorem

if x and y are positive real numbers then:

x
y +

y
x ≥ 2

Proof.

Assume:
∵ x and y are real numbers
Then:
∴ x − y is also a real number.
∴ (x − y)2 ≥ 0, the square of any real number is greater than or equal to 0.

∴ x2 − 2xy + y2 ≥ 0

∴ x
y − 2 + y

x ≥ 0 divide both sides of the inequality by xy

∴ x
y +

y
x ≥ 2 Adding 2 to both sides

ECEN 227 September 17, 2020 29 / 46



Direct Proof

Direct Proof (Example 3)

Theorem

if x and y are positive real numbers then:

x
y +

y
x ≥ 2

Proof.

Assume:
∵ x and y are real numbers
Then:
∴ x − y is also a real number.
∴ (x − y)2 ≥ 0, the square of any real number is greater than or equal to 0.

∴ x2 − 2xy + y2 ≥ 0
∴ x

y − 2 + y
x ≥ 0 divide both sides of the inequality by xy

∴ x
y +

y
x ≥ 2 Adding 2 to both sides

ECEN 227 September 17, 2020 29 / 46



Direct Proof

Direct Proof (Example 3)

Theorem

if x and y are positive real numbers then:

x
y +

y
x ≥ 2

Proof.

Assume:
∵ x and y are real numbers
Then:
∴ x − y is also a real number.
∴ (x − y)2 ≥ 0, the square of any real number is greater than or equal to 0.

∴ x2 − 2xy + y2 ≥ 0
∴ x

y − 2 + y
x ≥ 0 divide both sides of the inequality by xy

∴ x
y +

y
x ≥ 2 Adding 2 to both sides

ECEN 227 September 17, 2020 29 / 46



Proof by Contrapositive

Outline

1 Mathematical definitions

2 Introduction to proofs

3 Proof by Exhaustion

4 Proof by Counter Example

5 Direct Proof

6 Proof by Contrapositive

7 Indirect Proof

8 Proof by Cases
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Proof by Contrapositive

Proof by Contrapositive

Used to proof Conditional Statements such as p → c are correct.

Remember if p → c then ¬c → ¬p (i.e., contrapositive)

Proof by Contrapositive

In a proof by contrapositive of a conditional statement, the conclusion c is
assumed to be false (i.e., ¬c = true) and the hypothesis p is proven as
false (i.e., ¬p = true).
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Proof by Contrapositive

Proof by Contrapositive (Example 1)

Theorem

If 3n + 7 is an odd integer, then n is an even integer

Proof.

Assume:
n is an odd integer negation of conclusion

Then:
∵ n = 2k + 1 for some integer k
∴ 3n + 7 = 3(2k + 1) + 7
∴ 3n + 7 = 6k + 3 + 7
∴ 3n + 7 = 6k + 10
∴ 3n + 7 = 2(3k + 5)
∴ 3n + 7 = 2 m
Therefore: 3n + 7 is an even integer.

ECEN 227 September 17, 2020 32 / 46



Proof by Contrapositive

Proof by Contrapositive (Example 1)

Theorem

If 3n + 7 is an odd integer, then n is an even integer

Proof.

Assume:
n is an odd integer negation of conclusion

Then:
∵ n = 2k + 1 for some integer k

∴ 3n + 7 = 3(2k + 1) + 7
∴ 3n + 7 = 6k + 3 + 7
∴ 3n + 7 = 6k + 10
∴ 3n + 7 = 2(3k + 5)
∴ 3n + 7 = 2 m
Therefore: 3n + 7 is an even integer.

ECEN 227 September 17, 2020 32 / 46



Proof by Contrapositive

Proof by Contrapositive (Example 1)

Theorem

If 3n + 7 is an odd integer, then n is an even integer

Proof.

Assume:
n is an odd integer negation of conclusion

Then:
∵ n = 2k + 1 for some integer k
∴ 3n + 7 = 3(2k + 1) + 7

∴ 3n + 7 = 6k + 3 + 7
∴ 3n + 7 = 6k + 10
∴ 3n + 7 = 2(3k + 5)
∴ 3n + 7 = 2 m
Therefore: 3n + 7 is an even integer.

ECEN 227 September 17, 2020 32 / 46



Proof by Contrapositive

Proof by Contrapositive (Example 1)

Theorem

If 3n + 7 is an odd integer, then n is an even integer

Proof.

Assume:
n is an odd integer negation of conclusion

Then:
∵ n = 2k + 1 for some integer k
∴ 3n + 7 = 3(2k + 1) + 7
∴ 3n + 7 = 6k + 3 + 7

∴ 3n + 7 = 6k + 10
∴ 3n + 7 = 2(3k + 5)
∴ 3n + 7 = 2 m
Therefore: 3n + 7 is an even integer.

ECEN 227 September 17, 2020 32 / 46



Proof by Contrapositive

Proof by Contrapositive (Example 1)

Theorem

If 3n + 7 is an odd integer, then n is an even integer

Proof.

Assume:
n is an odd integer negation of conclusion

Then:
∵ n = 2k + 1 for some integer k
∴ 3n + 7 = 3(2k + 1) + 7
∴ 3n + 7 = 6k + 3 + 7
∴ 3n + 7 = 6k + 10

∴ 3n + 7 = 2(3k + 5)
∴ 3n + 7 = 2 m
Therefore: 3n + 7 is an even integer.

ECEN 227 September 17, 2020 32 / 46



Proof by Contrapositive

Proof by Contrapositive (Example 1)

Theorem

If 3n + 7 is an odd integer, then n is an even integer

Proof.

Assume:
n is an odd integer negation of conclusion

Then:
∵ n = 2k + 1 for some integer k
∴ 3n + 7 = 3(2k + 1) + 7
∴ 3n + 7 = 6k + 3 + 7
∴ 3n + 7 = 6k + 10
∴ 3n + 7 = 2(3k + 5)

∴ 3n + 7 = 2 m
Therefore: 3n + 7 is an even integer.

ECEN 227 September 17, 2020 32 / 46



Proof by Contrapositive

Proof by Contrapositive (Example 1)

Theorem

If 3n + 7 is an odd integer, then n is an even integer

Proof.

Assume:
n is an odd integer negation of conclusion

Then:
∵ n = 2k + 1 for some integer k
∴ 3n + 7 = 3(2k + 1) + 7
∴ 3n + 7 = 6k + 3 + 7
∴ 3n + 7 = 6k + 10
∴ 3n + 7 = 2(3k + 5)
∴ 3n + 7 = 2 m

Therefore: 3n + 7 is an even integer.

ECEN 227 September 17, 2020 32 / 46



Proof by Contrapositive

Proof by Contrapositive (Example 1)

Theorem

If 3n + 7 is an odd integer, then n is an even integer

Proof.

Assume:
n is an odd integer negation of conclusion

Then:
∵ n = 2k + 1 for some integer k
∴ 3n + 7 = 3(2k + 1) + 7
∴ 3n + 7 = 6k + 3 + 7
∴ 3n + 7 = 6k + 10
∴ 3n + 7 = 2(3k + 5)
∴ 3n + 7 = 2 m
Therefore: 3n + 7 is an even integer.

ECEN 227 September 17, 2020 32 / 46



Proof by Contrapositive

Proof by Contrapositive (Example 2)

Theorem

For every integer x, if x2 is even, then x is even.

Proof.

Assume:
x is an odd integer negation of conclusion

Then:
x = 2k+1
∴ x2 = (2k + 1)2

∴ x2 = 4k2 + 4k + 1
∴ x2 = 2(2k2 + 2k) + 1
∴ x2 = 2m + 1
∴ x2 is odd negation of hypothesis
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Proof by Contrapositive

Proof by Contrapositive (Example 3)

Theorem

For every positive real number r, if r is irrational, then
√
r is also irrational.

Proof.

Assume:
√
r is rational number negation of conclusion

Then:
∴
√
r = x

y

∴ r = x2

y2 Squaring both sides

Note : x and y are integers, also x2 and y2 are both integers.
Since y ≠ 0, y2 is also non-zero. The number r is equal to the ratio of two
integers in which the denominator is non-zero.

r is rational negation of hypothesis
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Indirect Proof

Outline

1 Mathematical definitions

2 Introduction to proofs

3 Proof by Exhaustion

4 Proof by Counter Example

5 Direct Proof

6 Proof by Contrapositive

7 Indirect Proof
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Indirect Proof

Proof by Contradiction (Indirect Proof)

Proof by contradiction

A proof by contradiction starts by assuming that the theorem is false and
then shows that some logical inconsistency arises as a result of this
assumption.

Unlike direct proofs a proof by contradiction can be used to prove
theorems that are not conditional statements.

Ex. To prove the statement p → q then the beginning assumption is p ∧¬q
which is logically equivalent to ¬(p → q).
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Indirect Proof

Proof by Contradiction (Example 1)

Theorem

If a and b are positive real numbers then
√
a +
√
b ≠
√
a + b

Proof.

Assume:
1. a > 0,b > 0
2.
√
a +
√
b =
√
a + b

Then:
∴(
√
a +
√
b)2 = (

√
a + b)2 Squaring both sides of 2

∴(
√
a

2
+ 2
√
ab +

√
b

2
) = a + b

∴(
√
a

2
+ 2
√
ab +

√
b

2
) = a + b

∴ a + 2
√
ab + b = a + b Subtract a+b

∴ 2
√
ab = 0

Either a = 0 or b = 0, Contradiction with 1
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Indirect Proof

Proof by Contradiction (Example 2)

√
2/2 is an irrational number.

Assume:√
2/2 is rational

Then:

∴
√

2/2 = a
b a and b are integers b ≠ 0

∴
√

2 = 2a
b multiplying both sides by 2

∴
√

2 = c
b where both c and b are integers

∴
√

2 is rational which contradicts that
√

2 is irrational number.
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Indirect Proof

Proof by Contradiction (Example 3)

Theorem

Among any group of 25 people, there must be at least three who are all
born in the same month.
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Indirect Proof

Proof by Contradiction (Example 3)

Theorem

p: group of 25 people,
q: there must be at least three who are all born in the same month.
p → q
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Indirect Proof

Proof by Contradiction (Example 3)

Theorem

x1 ∶# of people in Jan

x2 ∶# of people in Feb

. . .

x12 ∶# of people in Dec

x1 + x2 + ⋅ ⋅ ⋅ + x12 = 25

(x1 + x2 + ⋅ ⋅ ⋅ + x12 = 25) → ((x1 ≥ 3) ∨ . . . ∨ (x12 ≥ 3))
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Indirect Proof

Proof by Contradiction (Example 3)

Proof.

Assume:
1. (x1 + x2 + ⋅ ⋅ ⋅ + x12 = 25)
2. ((x1 ≤ 2) ∧ . . . ∧ (x12 ≤ 2))
Then.
∴ (x1 + x2 + ⋅ ⋅ ⋅ + x12) ≤ (2 + x2 + ⋅ ⋅ ⋅ + x12)

∴ (x1 + x2 + ⋅ ⋅ ⋅ + x12) ≤ (2 + 2 + ⋅ ⋅ ⋅ + x12)

∴ (x1 + x2 + ⋅ ⋅ ⋅ + x12) ≤ 24
Contradiction with 1.
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Proof by Cases
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Proof by Cases

Proof by cases

A proof by cases of a universal statement such as ∀xP(x) breaks the
domain for the variable x into different cases and gives a different
proof for each case.

Every value in the domain must be included in at least one case.
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Proof by Cases

Example 1

Theorem

For every integer x, x2 − x is an even integer.

Proof.

Case 1 x is even: x = 2k for some integer k

x2
− x = (2k)2 − 2k

= 4k2
− 2k

= 2(2k2
+ k)

= 2d

∴ theorem is correct for Case 1
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Proof by Cases

Example 1

Theorem

For every integer x, x2 − x is an even integer.

Proof.

Case 2 x is odd: x = 2k +1 for some integer k

x2
− x = (2k + 1)2 − (2k + 1)

= 4k2
+ 4k + 1 − (2k + 1)

= 4k2
+ 2k

= 2(2k2
+ k)

= 2d

∴ theorem is correct for Case 2
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Proof by Cases

Example 2

Theorem

For any real number x, ∣x + 5∣ − x > 1

Proof.

Case 1. (x + 5) ≥ 0: Therefore : ∣x + 5∣ = +(x + 5)

∣x + 5∣ − x = (x + 5) − x

= 5 > 1

∴ theorem is correct for Case 1
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Proof by Cases

Questions
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