ECEN 227 - Introduction to Finite Automata and Discrete Mathematics

ECEN 227

Dr. Mahmoud Nabil
mnmahmoud@ncat.edu
North Carolina A \& T State University

September 17, 2020

Talk Overview

(1) Mathematical definitions
(2) Introduction to proofs
(3) Proof by Exhaustion

4 Proof by Counter Example
(5) Direct Proof
(6) Proof by Contrapositive
(7) Indirect Proof
(8) Proof by Cases

Outline

(1) Mathematical definitions
(2) Introduction to proofs
(3) Proof by Exhaustion

- Proof by Counter Example
(5) Direct Proof
(6) Proof by Contrapositive
(7) Indirect Proof
(8) Proof by Cases

Even and Odd Integers

Even Integer
An integer x is even if there is an integer k such that $x=2 k$
Ex.

- $0=2^{*} 0$
- $2=2^{*} 1$
- $4=2^{*} 2$

Odd Integer
An integer x is odd if there is an integer k such that $x=2 k+1$.

Ex.

- $1=2^{*} 0+1$
- $3=2^{*} 1+1$
- $5=2^{*} 2+1$

Equality and Inequality

Symbol	Words
>	Greater than
$<$	Less than
\geq	Greater than OR equal at least
\leq	Less than OR equal
\ll	Between (Inclusive)
$\leq \leq$	Between (Exclusive)

Example

Negation of the inequalities

Symbol	Words
>	Greater than
$<$	Less than
\geq	Greater than OR equal at least
\leq	Less than OR equal
\ll	Between (Inclusive)
$\leq \leq$	Between (Exclusive)

Negation

Divides

Divides

An integer x divides an integer y if and only if $y=k x$, for some integer k.

Ex

- 5 divides 20 , in other words $20=5 * 4$

The fact that x divides y is denoted $x \mid y$. If x does not divide y , then that fact is denoted $x+y$.

If x divides y , then y is said to be a multiple of x , and x is a factor or divisor of y.

Prime and Composite Numbers

Prime Numbers

An integer n is prime if and only if $\mathrm{n}>1$, and for every positive integer m , if m divides n , then $\mathrm{m}=1$ or $\mathrm{m}=\mathrm{n}$.

Ex.

- $\mathrm{n}=7$
- $\mathrm{n}=13$

Combosite Numbers

An integer n is composite if and only if $n>1$, and there is an integer m such that $1<\mathrm{m}<\mathrm{n}$ and m divides n .

Ex.

- $\mathrm{n}=10, \mathrm{~m}=2$ or $\mathrm{m}=5$

Outline

(1) Mathematical definitions

(2) Introduction to proofs
(3) Proof by Exhaustion
4. Proof by Counter Example
(3) Direct Proof
(6) Proof by Contrapositive
(-) Indirect Proof
(8) Proof by Cases

Introduction

Theorem
A theorem is a statement that can be proven to be true.

Axiom

It is a statement which is accepted without question, and which has no proof.

Proof

A proof is of a series of steps, each of which follows logically from assumptions, axioms, or from previously proven statements, whose final step should result in the statement or the theorem being proven.

Introduction

- One of the hardest parts of writing proofs is knowing where to start.
- Proofs have common patterns, we will cover:
- Proof by Exhaustion.
- Proof by Counter Example.
- Direct Proof.
- Proof by Contrapositive.
- Proof by Contradiction.
- Proof by Cases.
- Coming up with proofs requires trial and error, even for experienced mathematicians.

How to start a proof?

- Usually proofs start with One or more assumption then some statements to show the proof goal.
- Assumptions can be inferred from the theorem text.
- Goal can also be inferred from the theorem text.
- Restating the assumption and the goal is the first step in building a proof.

Example

- The average of two real numbers is less than or equal to at least one of the two numbers.

Example

- The average of two real numbers is less than or equal to at least one of the two numbers.
- Assumption: Let x and y are two real numbers.

Example

- The average of two real numbers is less than or equal to at least one of the two numbers.
- Assumption: Let x and y are two real numbers.
- Goal: $(x+y) / 2 \leq x$ or $(x+y) / 2 \leq y$.

Example

- The average of two real numbers is less than or equal to at least one of the two numbers.
- Assumption: Let x and y are two real numbers.
- Goal: $(x+y) / 2 \leq x$ or $(x+y) / 2 \leq y$.
- The difference of two odd integers is even.

Example

- The average of two real numbers is less than or equal to at least one of the two numbers.
- Assumption: Let x and y are two real numbers.
- Goal: $(x+y) / 2 \leq x$ or $(x+y) / 2 \leq y$.
- The difference of two odd integers is even.
- Assumption: Let $\mathrm{x}=2 \mathrm{k}+1, \mathrm{y}=2 \mathrm{j}+1$

Example

- The average of two real numbers is less than or equal to at least one of the two numbers.
- Assumption: Let x and y are two real numbers.
- Goal: $(x+y) / 2 \leq x$ or $(x+y) / 2 \leq y$.
- The difference of two odd integers is even.
- Assumption: Let $\mathrm{x}=2 \mathrm{k}+1, \mathrm{y}=2 \mathrm{j}+1$
- Goal: $(x-y)$ is even.

Example

- The average of two real numbers is less than or equal to at least one of the two numbers.
- Assumption: Let x and y are two real numbers.
- Goal: $(x+y) / 2 \leq x$ or $(x+y) / 2 \leq y$.
- The difference of two odd integers is even.
- Assumption: Let $\mathrm{x}=2 \mathrm{k}+1, \mathrm{y}=2 \mathrm{j}+1$
- Goal: $(x-y)$ is even.
- Among any two consecutive integers, there is an odd number and an even number.

Example

- The average of two real numbers is less than or equal to at least one of the two numbers.
- Assumption: Let x and y are two real numbers.
- Goal: $(x+y) / 2 \leq x$ or $(x+y) / 2 \leq y$.
- The difference of two odd integers is even.
- Assumption: Let $\mathrm{x}=2 \mathrm{k}+1, \mathrm{y}=2 \mathrm{j}+1$
- Goal: $(x-y)$ is even.
- Among any two consecutive integers, there is an odd number and an even number.
- Assumption: Let x is an integer

Example

- The average of two real numbers is less than or equal to at least one of the two numbers.
- Assumption: Let x and y are two real numbers.
- Goal: $(x+y) / 2 \leq x$ or $(x+y) / 2 \leq y$.
- The difference of two odd integers is even.
- Assumption: Let $\mathrm{x}=2 \mathrm{k}+1, \mathrm{y}=2 \mathrm{j}+1$
- Goal: $(x-y)$ is even.
- Among any two consecutive integers, there is an odd number and an even number.
- Assumption: Let x is an integer
- Goal: x is even and $\mathrm{x}+1$ is odd or x is odd and $\mathrm{x}+1$ is even

Example

Theorem

Every positive integer is less than or equal to its square.

Example

Theorem

Every positive integer is less than or equal to its square.

Proof.

- Let x be an integer $x>0$. Name a generic object in the domain and state given assumptions about the object

Example

Theorem

Every positive integer is less than or equal to its square.

Proof.

- Let x be an integer $x>0$. Name a generic object in the domain and state given assumptions about the object
- Since x is an integer and $x>0$, then $x \geq 1$. State reasoning in complete sentence

Example

Theorem

Every positive integer is less than or equal to its square.

Proof.

- Let x be an integer $x>0$. Name a generic object in the domain and state given assumptions about the object
- Since x is an integer and $x>0$, then $x \geq 1$. State reasoning in complete sentence
- Since $x>0$, we can multiply both sides of the inequality by x to get:

$$
x * x \geq 1 * x
$$

Example

Theorem

Every positive integer is less than or equal to its square.

Proof.

- Let x be an integer $x>0$. Name a generic object in the domain and state given assumptions about the object
- Since x is an integer and $x>0$, then $x \geq 1$. State reasoning in complete sentence
- Since $x>0$, we can multiply both sides of the inequality by x to get:

$$
x * x \geq 1 * x .
$$

- Simplify the expression we get

$$
x^{2} \geq x
$$

Outline

(1) Mathematical definitions

(2) Introduction to proofs
(3) Proof by Exhaustion

4 Proof by Counter Example
(5) Direct Proof
(6) Proof by Contrapositive
(7) Indirect Proof
(8) Proof by Cases

Prove by Exhaustion

- For universal statements, if the domain is small, it may be easiest to prove the statement by checking each element individually.

Theorem
for $n \in\{-1,0,1\}$ we have $n^{2}=|n|$

Proof.

- $n=-1: \quad(-1)^{2}=1=|-1|$.

Prove by Exhaustion

- For universal statements, if the domain is small, it may be easiest to prove the statement by checking each element individually.

Theorem
for $n \in\{-1,0,1\}$ we have $n^{2}=|n|$

Proof.

- $n=-1: \quad(-1)^{2}=1=|-1|$.
- $n=0:(0)^{2}=0=|0|$.

Prove by Exhaustion

- For universal statements, if the domain is small, it may be easiest to prove the statement by checking each element individually.

Theorem
for $n \in\{-1,0,1\}$ we have $n^{2}=|n|$

Proof.

- $n=-1: \quad(-1)^{2}=1=|-1|$.
- $n=0:(0)^{2}=0=|0|$.
- $n=1: \quad(1)^{2}=1=|1|$.

Excercise

Proof by exhaustion

- For every integer n such that $0 \leq n<4,2^{(n+2)}>3^{n}$.

Excercise

Proof by exhaustion

- For every integer n such that $0 \leq n<4,2^{(n+2)}>3^{n}$.
- When $n=0,2^{(0+2)}=4$ and $3^{0}=1.4>1$.

Excercise

Proof by exhaustion

- For every integer n such that $0 \leq n<4,2^{(n+2)}>3^{n}$.
- When $n=0,2^{(0+2)}=4$ and $3^{0}=1.4>1$.
- When $\mathrm{n}=1,2^{(1+2)}=8$ and $3^{1}=3.8>3$.

Excercise

Proof by exhaustion

- For every integer n such that $0 \leq n<4,2^{(n+2)}>3^{n}$.
- When $n=0,2^{(0+2)}=4$ and $3^{0}=1.4>1$.
-When $\mathrm{n}=1,2^{(1+2)}=8$ and $3^{1}=3.8>3$.
- When $\mathrm{n}=2,2^{(2+2)}=16$ and $3^{2}=9.16>9$.

Excercise

Proof by exhaustion

- For every integer n such that $0 \leq n<4,2^{(n+2)}>3^{n}$.
- When $\mathrm{n}=0,2^{(0+2)}=4$ and $3^{0}=1.4>1$.
-When $\mathrm{n}=1,2^{(1+2)}=8$ and $3^{1}=3.8>3$.
- When $\mathrm{n}=2,2^{(2+2)}=16$ and $3^{2}=9.16>9$.
- When $n=32^{(3+2)}=32$ and $3^{3}=27.32>27$.

Outline

(1) Mathematical definitions

(2) Introduction to proofs
(3) Proof by Exhaustion
4. Proof by Counter Example
(5) Direct Proof
(6) Proof by Contrapositive
(-) Indirect Proof
(8) Proof by Cases

Counter example

- A counterexample is an assignment of values to variables.
- A counterexample can be used to proof/disproof a logical statement.

Ex

" If n is an integer greater than 1 , then $(1.1)^{n}<n^{10}$ ".
For $\mathrm{n}=686$, the statement is false because

$$
(1.1)^{686}>686^{10}
$$

Conditional statements proof/disproof

- A counterexample can be used to disproof a conditional statement must satisfy all the hypotheses and contradict the conclusion.
- Proofing conditional statement can use proof by exhaustion or other mathematical derivation to reach the goal.

Ex.

- Theorem: For any real number x , if $\mathrm{x} \geq 0$ and $\mathrm{x}<1$, then $x^{2}<x$.

Conditional statements proof/disproof

- A counterexample can be used to disproof a conditional statement must satisfy all the hypotheses and contradict the conclusion.
- Proofing conditional statement can use proof by exhaustion or other mathematical derivation to reach the goal.

Ex.

- Theorem: For any real number x, if $x \geq 0$ and $x<1$, then $x^{2}<x$.
- Counter example: $x=0$, satisfy the hypotheses and contradict the conclusion

Conditional statements proof/disproof

- A counterexample can be used to disproof a conditional statement must satisfy all the hypotheses and contradict the conclusion.
- Proofing conditional statement can use proof by exhaustion or other mathematical derivation to reach the goal.

Ex.

- Theorem: For any real number x, if $x \geq 0$ and $x<1$, then $x^{2}<x$.
- Counter example: $x=0$, satisfy the hypotheses and contradict the conclusion
- Theorem: if x is positive integer, then $1 / x<x$.

Conditional statements proof/disproof

- A counterexample can be used to disproof a conditional statement must satisfy all the hypotheses and contradict the conclusion.
- Proofing conditional statement can use proof by exhaustion or other mathematical derivation to reach the goal.

Ex.

- Theorem: For any real number x, if $x \geq 0$ and $x<1$, then $x^{2}<x$.
- Counter example: $x=0$, satisfy the hypotheses and contradict the conclusion
- Theorem: if x is positive integer, then $1 / x<x$.
- Counter example: $x=1$, satisfy the hypotheses and contradict the conclusion

Universal Statement Proof/Disproof

- A counterexample can be used to disproof a universal statement.
- Proofing universal statement can use proof by exhaustion or other mathematical derivation to reach the goal.

Ex.

- Theorem: All primes are odd.

Universal Statement Proof/Disproof

- A counterexample can be used to disproof a universal statement.
- Proofing universal statement can use proof by exhaustion or other mathematical derivation to reach the goal.

Ex.

- Theorem: All primes are odd.
- Counter example: $x=2$, prime but not odd

Existential Statement Proof

- A counterexample can be used to proof a existential statement, this method called constructive proof of existence.

Ex.

- Theorem: There is an integer that can be written as the sum of the squares of two positive integers in two different ways.

Existential Statement Proof

- A counterexample can be used to proof a existential statement, this method called constructive proof of existence.

Ex.

- Theorem: There is an integer that can be written as the sum of the squares of two positive integers in two different ways.
- $50=1^{2}+7^{2}$

Existential Statement Proof

- A counterexample can be used to proof a existential statement, this method called constructive proof of existence.

Ex.

- Theorem: There is an integer that can be written as the sum of the squares of two positive integers in two different ways.
- $50=1^{2}+7^{2}$
- Theorem: There are two consecutive positive integers whose product is less than their sum.

Existential Statement Proof

- A counterexample can be used to proof a existential statement, this method called constructive proof of existence.

Ex.

- Theorem: There is an integer that can be written as the sum of the squares of two positive integers in two different ways.
- $50=1^{2}+7^{2}$
- Theorem: There are two consecutive positive integers whose product is less than their sum.
- 1 and 2

Existential Statement DisProof

- Disproofing existential statement can use proof by exhaustion or other mathematical derivation to reach the negation of the goal

Ex.

- Theorem: There is a real number whose square is negative.

Existential Statement DisProof

- Disproofing existential statement can use proof by exhaustion or other mathematical derivation to reach the negation of the goal

Ex.

- Theorem: There is a real number whose square is negative.
- Disproof Goal: It is not true that there is a real number whose square is negative.

Existential Statement DisProof

- Disproofing existential statement can use proof by exhaustion or other mathematical derivation to reach the negation of the goal

Ex.

- Theorem: There is a real number whose square is negative.
- Disproof Goal: It is not true that there is a real number whose square is negative.
- Disproof Goal: Every real number does not have a negative square.

Existential Statement DisProof

- Disproofing existential statement can use proof by exhaustion or other mathematical derivation to reach the negation of the goal

Ex.

- Theorem: There is a real number whose square is negative.
- Disproof Goal: It is not true that there is a real number whose square is negative.
- Disproof Goal: Every real number does not have a negative square.
- Disproof Goal: Every real number have a square that is greater than or equal zero.

Excercise

Find a counterexample to show that each of the statements is false.

- Every month of the year has 30 or 31 days.

Excercise

Find a counterexample to show that each of the statements is false.

- Every month of the year has 30 or 31 days.
- February

Excercise

Find a counterexample to show that each of the statements is false.

- Every month of the year has 30 or 31 days.
- February
- If n is an integer and n^{2} is divisible by 4 , then n is divisible by 4 .

Excercise

Find a counterexample to show that each of the statements is false.

- Every month of the year has 30 or 31 days.
- February
- If n is an integer and n^{2} is divisible by 4 , then n is divisible by 4 .
- $\mathrm{n}=2$

Excercise

Find a counterexample to show that each of the statements is false.

- Every month of the year has 30 or 31 days.
- February
- If n is an integer and n^{2} is divisible by 4 , then n is divisible by 4 .
- $\mathrm{n}=2$
- For every positive integer $\mathrm{x}, \mathrm{x}^{3}<2^{x}$

Excercise

Find a counterexample to show that each of the statements is false.

- Every month of the year has 30 or 31 days.
- February
- If n is an integer and n^{2} is divisible by 4 , then n is divisible by 4 .
- $\mathrm{n}=2$
- For every positive integer $x, x^{3}<2^{x}$
- $\mathrm{x}=3$

Outline

(1) Mathematical definitions

(2) Introduction to proofs
(3) Proof by Exhaustion
(a) Proof by Counter Example
(5) Direct Proof
(6) Proof by Contrapositive
(7) Indirect Proof
(3) Proof by Cases

Direct Proof

Used to proof Conditional Statements such as $p \rightarrow c$ are correct.
Direct Proof
In a direct proof of a conditional statement, the hypothesis p is assumed to be true and the conclusion c is proven as a direct result of the assumption.

Direct Proof (Example 1)

Theorem
if x is an odd integer and y is an even integer then:

$$
x+y \text { is odd }
$$

Proof.

Assume:

$\because x=2 j+1$

Direct Proof (Example 1)

Theorem
if x is an odd integer and y is an even integer then:

$$
x+y \text { is odd }
$$

Proof.

Assume:

$\because x=2 j+1$
$\because y=2 k$

Direct Proof (Example 1)

Theorem
if x is an odd integer and y is an even integer then:

$$
x+y \text { is odd }
$$

Proof.

Assume:

$\because x=2 j+1$
$\because y=2 k$
Then:
$\therefore x+y=2 j+1+2 k$

Direct Proof (Example 1)

Theorem
if x is an odd integer and y is an even integer then:

$$
x+y \text { is odd }
$$

Proof.

Assume:

$\because x=2 j+1$
$\because y=2 k$

Then:

$\therefore x+y=2 \mathrm{j}+1+2 \mathrm{k}$
$\therefore x+y=2(\mathrm{j}+\mathrm{k})+1$

Direct Proof (Example 1)

Theorem
if x is an odd integer and y is an even integer then:

$$
x+y \text { is odd }
$$

Proof.

Assume:

$\because x=2 j+1$
$\because y=2 k$

Then:

$\therefore x+y=2 \mathrm{j}+1+2 \mathrm{k}$
$\therefore x+y=2(\mathrm{j}+\mathrm{k})+1$
$\therefore x+y=2 m+1$

Direct Proof (Example 1)

Theorem
if x is an odd integer and y is an even integer then:

$$
x+y \text { is odd }
$$

Proof.

Assume:

$\because x=2 j+1$
$\because y=2 k$

Then:

$\therefore x+y=2 \mathrm{j}+1+2 \mathrm{k}$
$\therefore x+y=2(\mathrm{j}+\mathrm{k})+1$
$\therefore x+y=2 m+1$
m is an integer $=j+k$
$\therefore x+y$ is odd

Direct Proof (Example 2)

Theorem
if r and s are rational numbers then:

$$
r+s \text { is a rational number. }
$$

Proof.

Assume:

$\because r=\frac{a}{b} \quad a$ and b are integers $b \neq 0$

Direct Proof (Example 2)

Theorem
if r and s are rational numbers then:

$$
r+s \text { is a rational number. }
$$

Proof.

Assume:

$\because r=\frac{a}{b} \quad a$ and b are integers $b \neq 0$
$\because S=\frac{c}{d} \quad c$ and d are integers $d \neq 0$

Direct Proof (Example 2)

Theorem
if r and s are rational numbers then:

$$
r+s \text { is a rational number. }
$$

Proof.

Assume:

$\because r=\frac{a}{b} \quad$ a and b are integers $b \neq 0$
$\because s=\frac{c}{d} \quad c$ and d are integers $d \neq 0$

Then:

$\therefore r+s=\frac{a}{b}+\frac{c}{d}$

Direct Proof (Example 2)

Theorem
if r and s are rational numbers then:

$$
r+s \text { is a rational number. }
$$

Proof.

Assume:

$\because r=\frac{a}{b} \quad$ a and b are integers $b \neq 0$
$\because s=\frac{c}{d} \quad c$ and d are integers $d \neq 0$

Then:

$\therefore r+s=\frac{a}{b}+\frac{c}{d}$
$\therefore r+s=\frac{(a d+c b)}{d b}$

Direct Proof (Example 2)

Theorem
if r and s are rational numbers then:
$r+s$ is a rational number.

Proof.

Assume:

$\because r=\frac{a}{b} \quad a$ and b are integers $b \neq 0$
$\because S=\frac{c}{d} \quad c$ and d are integers $d \neq 0$

Then:

$\therefore r+s=\frac{a}{b}+\frac{c}{d}$
$\therefore r+s=\frac{(a d+c b)}{d b}$
$\therefore r+s=\frac{j}{k} \quad j=a d+c b$ and $k=d b$ are integers $k \neq 0$

Direct Proof (Example 2)

Theorem
if r and s are rational numbers then:
$r+s$ is a rational number.

Proof.

Assume:

$\because r=\frac{a}{b} \quad a$ and b are integers $b \neq 0$
$\because S=\frac{c}{d} \quad c$ and d are integers $d \neq 0$

Then:

$\therefore r+s=\frac{a}{b}+\frac{c}{d}$
$\therefore r+s=\frac{(a d+c b)}{d b}$
$\therefore r+s=\frac{j}{k} \quad j=a d+c b$ and $k=d b$ are integers $k \neq 0$
$\therefore \mathrm{r}+\mathrm{s}$ is rational

Direct Proof (Example 3)

Theorem
if x and y are positive real numbers then:

$$
\frac{x}{y}+\frac{y}{x} \geq 2
$$

Proof.

Assume:

$\because \mathrm{x}$ and y are real numbers

Direct Proof (Example 3)

Theorem
if x and y are positive real numbers then:

$$
\frac{x}{y}+\frac{y}{x} \geq 2
$$

Proof.

Assume:

$\because \mathrm{x}$ and y are real numbers

Then:

$\therefore x-y$ is also a real number.

Direct Proof (Example 3)

Theorem

if x and y are positive real numbers then:

$$
\frac{x}{y}+\frac{y}{x} \geq 2
$$

Proof.

Assume:

$\because x$ and y are real numbers

Then:

$\therefore x-y$ is also a real number.
$\therefore(x-y)^{2} \geq 0$, the square of any real number is greater than or equal to 0 .

Direct Proof (Example 3)

Theorem

if x and y are positive real numbers then:

$$
\frac{x}{y}+\frac{y}{x} \geq 2
$$

Proof.

Assume:

$\because x$ and y are real numbers

Then:

$\therefore x-y$ is also a real number.
$\therefore(x-y)^{2} \geq 0$, the square of any real number is greater than or equal to 0 .
$\therefore x^{2}-2 x y+y^{2} \geq 0$

Direct Proof (Example 3)

Theorem

if x and y are positive real numbers then:

$$
\frac{x}{y}+\frac{y}{x} \geq 2
$$

Proof.

Assume:

$\because x$ and y are real numbers

Then:

$\therefore x-y$ is also a real number.
$\therefore(x-y)^{2} \geq 0$, the square of any real number is greater than or equal to 0 .
$\therefore x^{2}-2 x y+y^{2} \geq 0$
$\therefore \frac{x}{y}-2+\frac{y}{x} \geq 0 \quad$ divide both sides of the inequality by $x y$

Direct Proof (Example 3)

Theorem

if x and y are positive real numbers then:

$$
\frac{x}{y}+\frac{y}{x} \geq 2
$$

Proof.

Assume:

$\because x$ and y are real numbers

Then:

$\therefore x-y$ is also a real number.
$\therefore(x-y)^{2} \geq 0$, the square of any real number is greater than or equal to 0 .
$\therefore x^{2}-2 x y+y^{2} \geq 0$
$\therefore \frac{x}{y}-2+\frac{y}{x} \geq 0 \quad$ divide both sides of the inequality by $x y$
$\therefore \frac{x}{y}+\frac{y}{x} \geq 2$ Adding 2 to both sides

Outline

(1) Mathematical definitions

(2) Introduction to proofs
(3) Proof by Exhaustion
(4) Proof by Counter Example
(5) Direct Proof
(6) Proof by Contrapositive
(7) Indirect Proof
(8) Proof by Cases

Proof by Contrapositive

- Used to proof Conditional Statements such as $p \rightarrow c$ are correct.
- Remember if $p \rightarrow c$ then $\neg c \rightarrow \neg p$ (i.e., contrapositive)

Proof by Contrapositive
In a proof by contrapositive of a conditional statement, the conclusion c is assumed to be false (i.e., $\neg c=$ true) and the hypothesis p is proven as false (i.e., $\neg p=t r u e$).

Proof by Contrapositive (Example 1)

Theorem

If $3 n+7$ is an odd integer, then n is an even integer
Proof.

Assume:

n is an odd integer
negation of conclusion

Proof by Contrapositive (Example 1)

Theorem

If $3 n+7$ is an odd integer, then n is an even integer
Proof.

Assume:

n is an odd integer
negation of conclusion
Then:
$\because \mathrm{n}=2 \mathrm{k}+1$ for some integer k

Proof by Contrapositive (Example 1)

Theorem

If $3 n+7$ is an odd integer, then n is an even integer
Proof.

Assume:

n is an odd integer
negation of conclusion
Then:
$\because \mathrm{n}=2 \mathrm{k}+1$ for some integer k
$\therefore 3 n+7=3(2 k+1)+7$

Proof by Contrapositive (Example 1)

Theorem

If $3 n+7$ is an odd integer, then n is an even integer

Proof.

Assume:

n is an odd integer
negation of conclusion
Then:
$\because \mathrm{n}=2 \mathrm{k}+1$ for some integer k
$\therefore 3 n+7=3(2 k+1)+7$
$\therefore 3 n+7=6 k+3+7$

Proof by Contrapositive (Example 1)

Theorem

If $3 n+7$ is an odd integer, then n is an even integer

Proof.

Assume:

n is an odd integer

Then:

$\because \mathrm{n}=2 \mathrm{k}+1$ for some integer k
$\therefore 3 n+7=3(2 k+1)+7$
$\therefore 3 n+7=6 k+3+7$
$\therefore 3 n+7=6 k+10$

Proof by Contrapositive (Example 1)

Theorem

If $3 n+7$ is an odd integer, then n is an even integer

Proof.

Assume:

n is an odd integer

Then:

$\because \mathrm{n}=2 \mathrm{k}+1$ for some integer k
$\therefore 3 n+7=3(2 k+1)+7$
$\therefore 3 n+7=6 k+3+7$
$\therefore 3 n+7=6 k+10$
$\therefore 3 n+7=2(3 k+5)$

Proof by Contrapositive (Example 1)

Theorem

If $3 n+7$ is an odd integer, then n is an even integer

Proof.

Assume:

n is an odd integer

Then:

$\because \mathrm{n}=2 \mathrm{k}+1$ for some integer k
$\therefore 3 n+7=3(2 k+1)+7$
$\therefore 3 n+7=6 k+3+7$
$\therefore 3 n+7=6 k+10$
$\therefore 3 n+7=2(3 k+5)$
$\therefore 3 \mathrm{n}+7=2 \mathrm{~m}$

Proof by Contrapositive (Example 1)

Theorem

If $3 n+7$ is an odd integer, then n is an even integer

Proof.

Assume:

n is an odd integer

Then:

$\because \mathrm{n}=2 \mathrm{k}+1$ for some integer k
$\therefore 3 n+7=3(2 k+1)+7$
$\therefore 3 n+7=6 k+3+7$
$\therefore 3 n+7=6 k+10$
$\therefore 3 n+7=2(3 k+5)$
$\therefore 3 \mathrm{n}+7=2 \mathrm{~m}$
Therefore: $3 n+7$ is an even integer.

Proof by Contrapositive (Example 2)

Theorem

For every integer x, if x^{2} is even, then x is even.
Proof.

Assume:

x is an odd integer
negation of conclusion

Proof by Contrapositive (Example 2)

Theorem

For every integer x, if x^{2} is even, then x is even.
Proof.
Assume:
x is an odd integer
negation of conclusion
Then:
$x=2 k+1$

Proof by Contrapositive (Example 2)

Theorem

For every integer x, if x^{2} is even, then x is even.
Proof.

Assume:

x is an odd integer
negation of conclusion
Then:
$x=2 k+1$
$\therefore x^{2}=(2 k+1)^{2}$

Proof by Contrapositive (Example 2)

Theorem

For every integer x, if x^{2} is even, then x is even.
Proof.

Assume:

x is an odd integer
negation of conclusion
Then:
$x=2 k+1$
$\therefore x^{2}=(2 k+1)^{2}$
$\therefore x^{2}=4 k^{2}+4 k+1$

Proof by Contrapositive (Example 2)

Theorem

For every integer x, if x^{2} is even, then x is even.
Proof.

Assume:

x is an odd integer

Then:

$x=2 k+1$
$\therefore x^{2}=(2 k+1)^{2}$
$\therefore x^{2}=4 k^{2}+4 k+1$
$\therefore x^{2}=2\left(2 k^{2}+2 k\right)+1$

Proof by Contrapositive (Example 2)

Theorem

For every integer x, if x^{2} is even, then x is even.
Proof.

Assume:

x is an odd integer

Then:

$\mathrm{x}=2 \mathrm{k}+1$
$\therefore x^{2}=(2 k+1)^{2}$
$\therefore x^{2}=4 k^{2}+4 k+1$
$\therefore x^{2}=2\left(2 k^{2}+2 k\right)+1$
$\therefore x^{2}=2 m+1$

Proof by Contrapositive (Example 2)

Theorem

For every integer x, if x^{2} is even, then x is even.
Proof.

Assume:

x is an odd integer negation of conclusion

Then:

$x=2 k+1$
$\therefore x^{2}=(2 k+1)^{2}$
$\therefore x^{2}=4 k^{2}+4 k+1$
$\therefore x^{2}=2\left(2 k^{2}+2 k\right)+1$
$\therefore x^{2}=2 m+1$
$\therefore x^{2}$ is odd

Proof by Contrapositive (Example 2)

Theorem

For every integer x, if x^{2} is even, then x is even.
Proof.

Assume:

x is an odd integer negation of conclusion

Then:

$x=2 k+1$
$\therefore x^{2}=(2 k+1)^{2}$
$\therefore x^{2}=4 k^{2}+4 k+1$
$\therefore x^{2}=2\left(2 k^{2}+2 k\right)+1$
$\therefore x^{2}=2 m+1$
$\therefore x^{2}$ is odd

Proof by Contrapositive (Example 3)

Theorem

For every positive real number r, if r is irrational, then \sqrt{r} is also irrational.

Proof by Contrapositive (Example 3)

Theorem

For every positive real number r, if r is irrational, then \sqrt{r} is also irrational.
Proof.

Assume:

\sqrt{r} is rational number
negation of conclusion

Proof by Contrapositive (Example 3)

Theorem

For every positive real number r, if r is irrational, then \sqrt{r} is also irrational.
Proof.

Assume:

\sqrt{r} is rational number
negation of conclusion
Then:
$\therefore \sqrt{r}=\frac{x}{y}$

Proof by Contrapositive (Example 3)

Theorem

For every positive real number r, if r is irrational, then \sqrt{r} is also irrational.

Proof.

Assume:

\sqrt{r} is rational number Then:
$\therefore \sqrt{r}=\frac{x}{y}$
$\therefore r=\frac{x^{2}}{y^{2}}$
Squaring both sides

Proof by Contrapositive (Example 3)

Theorem

For every positive real number r, if r is irrational, then \sqrt{r} is also irrational.

Proof.

Assume:

\sqrt{r} is rational number
negation of conclusion
Then:
$\therefore \sqrt{r}=\frac{x}{y}$
$\therefore r=\frac{x^{2}}{y^{2}}$
Note : x and y are integers, also x^{2} and y^{2} are both integers.
Since $y \neq 0, y^{2}$ is also non-zero. The number r is equal to the ratio of two integers in which the denominator is non-zero.

Proof by Contrapositive (Example 3)

Theorem

For every positive real number r, if r is irrational, then \sqrt{r} is also irrational.

Proof.

Assume:

\sqrt{r} is rational number
negation of conclusion
Then:
$\therefore \sqrt{r}=\frac{x}{y}$
$\therefore r=\frac{x^{2}}{y^{2}}$
Note : x and y are integers, also x^{2} and y^{2} are both integers.
Since $y \neq 0, y^{2}$ is also non-zero. The number r is equal to the ratio of two integers in which the denominator is non-zero.
r is rational

Proof by Contrapositive (Example 3)

Theorem

For every positive real number r, if r is irrational, then \sqrt{r} is also irrational.

Proof.

Assume:

\sqrt{r} is rational number
negation of conclusion
Then:
$\therefore \sqrt{r}=\frac{x}{y}$
$\therefore r=\frac{x^{2}}{y^{2}}$
Note : x and y are integers, also x^{2} and y^{2} are both integers.
Since $y \neq 0, y^{2}$ is also non-zero. The number r is equal to the ratio of two integers in which the denominator is non-zero.

Outline

(1) Mathematical definitions

(2) Introduction to proofs
(3) Proof by Exhaustion
(4) Proof by Counter Example
(5) Direct Proof
(6) Proof by Contrapositive
(7) Indirect Proof
(8) Proof by Cases

Proof by Contradiction (Indirect Proof)

Proof by contradiction
A proof by contradiction starts by assuming that the theorem is false and then shows that some logical inconsistency arises as a result of this assumption.

- Unlike direct proofs a proof by contradiction can be used to prove theorems that are not conditional statements.

Ex. To prove the statement $p \rightarrow q$ then the beginning assumption is $p \wedge \neg q$ which is logically equivalent to $\neg(p \rightarrow q)$.

Proof by Contradiction (Example 1)

Theorem
If a and b are positive real numbers then $\sqrt{a}+\sqrt{b} \neq \sqrt{a+b}$
Proof.
Assume:

1. $a>0, b>0$
2. $\sqrt{a}+\sqrt{b}=\sqrt{a+b}$

Proof by Contradiction (Example 1)

Theorem
If a and b are positive real numbers then $\sqrt{a}+\sqrt{b} \neq \sqrt{a+b}$
Proof.
Assume:

1. $a>0, b>0$
2. $\sqrt{a}+\sqrt{b}=\sqrt{a+b}$

Then:

$\therefore(\sqrt{a}+\sqrt{b})^{2}=(\sqrt{a+b})^{2}$

Proof by Contradiction (Example 1)

Theorem
If a and b are positive real numbers then $\sqrt{a}+\sqrt{b} \neq \sqrt{a+b}$
Proof.
Assume:

1. $a>0, b>0$
2. $\sqrt{a}+\sqrt{b}=\sqrt{a+b}$

Then:

$\therefore(\sqrt{a}+\sqrt{b})^{2}=(\sqrt{a+b})^{2}$
Squaring both sides of 2
$\therefore\left(\sqrt{a}^{2}+2 \sqrt{a b}+\sqrt{b}^{2}\right)=a+b$

Proof by Contradiction (Example 1)

Theorem
If a and b are positive real numbers then $\sqrt{a}+\sqrt{b} \neq \sqrt{a+b}$
Proof.
Assume:

1. $a>0, b>0$
2. $\sqrt{a}+\sqrt{b}=\sqrt{a+b}$

Then:

$\therefore(\sqrt{a}+\sqrt{b})^{2}=(\sqrt{a+b})^{2}$
$\therefore\left(\sqrt{a}^{2}+2 \sqrt{a b}+\sqrt{b}^{2}\right)=a+b$
$\therefore\left(\sqrt{a}^{2}+2 \sqrt{a b}+\sqrt{b}^{2}\right)=a+b$

Proof by Contradiction (Example 1)

Theorem
If a and b are positive real numbers then $\sqrt{a}+\sqrt{b} \neq \sqrt{a+b}$
Proof.
Assume:

1. $a>0, b>0$
2. $\sqrt{a}+\sqrt{b}=\sqrt{a+b}$

Then:

$\therefore(\sqrt{a}+\sqrt{b})^{2}=(\sqrt{a+b})^{2}$
$\therefore\left(\sqrt{a}^{2}+2 \sqrt{a b}+\sqrt{b}^{2}\right)=a+b$
$\therefore\left(\sqrt{a}^{2}+2 \sqrt{a b}+\sqrt{b}^{2}\right)=a+b$
$\therefore a+2 \sqrt{a b}+b=a+b$

Proof by Contradiction (Example 1)

Theorem
If a and b are positive real numbers then $\sqrt{a}+\sqrt{b} \neq \sqrt{a+b}$
Proof.

Assume:

1. $a>0, b>0$
2. $\sqrt{a}+\sqrt{b}=\sqrt{a+b}$

Then:

$\therefore(\sqrt{a}+\sqrt{b})^{2}=(\sqrt{a+b})^{2}$
$\therefore\left(\sqrt{a}^{2}+2 \sqrt{a b}+\sqrt{b}^{2}\right)=a+b$
$\therefore\left(\sqrt{a}^{2}+2 \sqrt{a b}+\sqrt{b}^{2}\right)=a+b$
$\therefore a+2 \sqrt{a b}+b=a+b$
Subtract $a+b$
$\therefore 2 \sqrt{a b}=0$

Proof by Contradiction (Example 1)

Theorem

If a and b are positive real numbers then $\sqrt{a}+\sqrt{b} \neq \sqrt{a+b}$
Proof.
Assume:

1. $a>0, b>0$
2. $\sqrt{a}+\sqrt{b}=\sqrt{a+b}$

Then:

$\therefore(\sqrt{a}+\sqrt{b})^{2}=(\sqrt{a+b})^{2}$
$\therefore\left(\sqrt{a}^{2}+2 \sqrt{a b}+\sqrt{b}^{2}\right)=a+b$
$\therefore\left(\sqrt{a}^{2}+2 \sqrt{a b}+\sqrt{b}^{2}\right)=a+b$
$\therefore a+2 \sqrt{a b}+b=a+b$
$\therefore 2 \sqrt{a b}=0$
Either $\mathrm{a}=0$ or $\mathrm{b}=0$, Contradiction with 1

Proof by Contradiction (Example 2)

$\sqrt{2} / 2$ is an irrational number.

Assume:

$\sqrt{2} / 2$ is rational
Then:

Proof by Contradiction (Example 2)

$\sqrt{2} / 2$ is an irrational number.

Assume:

$\sqrt{2} / 2$ is rational
Then:
$\therefore \sqrt{2} / 2=\frac{a}{b} \quad a$ and b are integers $b \neq 0$

Proof by Contradiction (Example 2)

$\sqrt{2} / 2$ is an irrational number.

Assume:

$\sqrt{2} / 2$ is rational

Then:

$\therefore \sqrt{2} / 2=\frac{a}{b} \quad a$ and b are integers $b \neq 0$
$\therefore \sqrt{2}=\frac{2 a}{b} \quad$ multiplying both sides by 2

Proof by Contradiction (Example 2)

$\sqrt{2} / 2$ is an irrational number.

Assume:

$\sqrt{2} / 2$ is rational

Then:

$\therefore \sqrt{2} / 2=\frac{a}{b} \quad a$ and b are integers $b \neq 0$
$\therefore \sqrt{2}=\frac{2 a}{b}$ multiplying both sides by 2
$\therefore \sqrt{2}=\frac{c}{b}$ where both c and b are integers

Proof by Contradiction (Example 2)

$\sqrt{2} / 2$ is an irrational number.

Assume:

$\sqrt{2} / 2$ is rational

Then:

$\therefore \sqrt{2} / 2=\frac{a}{b} \quad a$ and b are integers $b \neq 0$
$\therefore \sqrt{2}=\frac{2 a}{b} \quad$ multiplying both sides by 2
$\therefore \sqrt{2}=\frac{c}{b} \quad$ where both c and b are integers
$\therefore \sqrt{2}$ is rational which contradicts that $\sqrt{2}$ is irrational number.

Proof by Contradiction (Example 3)

Theorem
Among any group of 25 people, there must be at least three who are all born in the same month.

Proof by Contradiction (Example 3)

Theorem
p: group of 25 people,
q : there must be at least three who are all born in the same month.
$p \rightarrow q$

Proof by Contradiction (Example 3)

Theorem

- x_{1} : \# of people in Jan
- x_{2} : \# of people in Feb
- x_{12} : \# of people in Dec
- $x_{1}+x_{2}+\cdots+x_{12}=25$
- $\left(x_{1}+x_{2}+\cdots+x_{12}=25\right) \rightarrow\left(\left(x_{1} \geq 3\right) \vee \ldots \vee\left(x_{12} \geq 3\right)\right)$

Proof by Contradiction (Example 3)

Proof.
Assume:

1. $\left(x_{1}+x_{2}+\cdots+x_{12}=25\right)$
2. $\left(\left(x_{1} \leq 2\right) \wedge \ldots \wedge\left(x_{12} \leq 2\right)\right)$

Then.
$\therefore\left(x_{1}+x_{2}+\cdots+x_{12}\right) \leq\left(2+x_{2}+\cdots+x_{12}\right)$
$\therefore\left(x_{1}+x_{2}+\cdots+x_{12}\right) \leq\left(2+2+\cdots+x_{12}\right)$
$\therefore\left(x_{1}+x_{2}+\cdots+x_{12}\right) \leq 24$
Contradiction with 1.

Outline

(1) Mathematical definitions

(2) Introduction to proofs
(3) Proof by Exhaustion
(2) Proof by Counter Example
(5) Direct Proof
(-) Proof by Contrapositive
(7) Indirect Proof
(8) Proof by Cases

Proof by cases

- A proof by cases of a universal statement such as $\forall x P(x)$ breaks the domain for the variable x into different cases and gives a different proof for each case.
- Every value in the domain must be included in at least one case.

Example 1

Theorem
For every integer $x, x^{2}-x$ is an even integer.

Proof.
Case $1 \times$ is even: $x=2 k$ for some integer k

Example 1

Theorem
For every integer $x, x^{2}-x$ is an even integer.

Proof.
Case $1 \times$ is even: $x=2 k$ for some integer k

$$
\begin{aligned}
x^{2}-x & =(2 k)^{2}-2 k \\
& =4 k^{2}-2 k \\
& =2\left(2 k^{2}+k\right) \\
& =2 d
\end{aligned}
$$

\therefore theorem is correct for Case 1

Example 1

Theorem
For every integer $x, x^{2}-x$ is an even integer.
Proof.
Case 2 x is odd: $\mathrm{x}=2 \mathrm{k}+1$ for some integer k

Example 1

Theorem
For every integer $x, x^{2}-x$ is an even integer.

Proof.

Case 2 x is odd: $\mathrm{x}=2 \mathrm{k}+1$ for some integer k

$$
\begin{aligned}
x^{2}-x & =(2 k+1)^{2}-(2 k+1) \\
& =4 k^{2}+4 k+1-(2 k+1) \\
& =4 k^{2}+2 k \\
& =2\left(2 k^{2}+k\right) \\
& =2 d
\end{aligned}
$$

Example 2

Theorem
For any real number $x,|x+5|-x>1$

Proof.

Case 1. $(x+5) \geq 0$: Therefore : $|x+5|=+(x+5)$

$$
\begin{aligned}
|x+5|-x & =(x+5)-x \\
& =5>1
\end{aligned}
$$

\therefore theorem is correct for Case 1

Questions \mathcal{R}

