ECEN 227 - Introduction to Finite Automata and Discrete Mathematics

Dr. Mahmoud Nabil
mnmahmoud@ncat.edu
North Carolina A \& T State University

October 2, 2020

Talk Overview

(1) The Division Algorithm
(2) Modular Arithmetic
(3) Prime factorizations
(4) Primality Test

Outline

(1) The Division Algorithm

(2) Modular Arithmetic

(3) Prime factorizations

4 Primality Test

Number Theory Introduction

- Why do we use numbers basically?

Ex.

$$
\begin{array}{ll}
5+3=8 & 8-3=5 \\
5 \times 3=15 & 15 \div 3=5
\end{array}
$$

Number Theory Introduction

- Why do we use numbers basically?
- For Counting

Ex.

$$
\begin{array}{ll}
5+3=8 & 8-3=5 \\
5 \times 3=15 & 15 \div 3=5
\end{array}
$$

Number Theory Introduction

- Why do we use numbers basically?
- For Counting
- Addition and Multiplication operations are invented to support fast counting

Ex.

$$
\begin{array}{ll}
5+3=8 & 8-3=5 \\
5 \times 3=15 & 15 \div 3=5
\end{array}
$$

Number Theory Introduction

- Why do we use numbers basically?
- For Counting
- Addition and Multiplication operations are invented to support fast counting
- Subtraction and Division are then introduced as inverse operations for Addition and Multiplication.

Ex.

$$
\begin{array}{ll}
5+3=8 & 8-3=5 \\
5 \times 3=15 & 15 \div 3=5
\end{array}
$$

Number Theory Introduction

- Why do we use numbers basically?
- For Counting
- Addition and Multiplication operations are invented to support fast counting
- Subtraction and Division are then introduced as inverse operations for Addition and Multiplication.
- Operations are done on the number line.

Ex.

$$
\begin{array}{ll}
5+3=8 & 8-3=5 \\
5 \times 3=15 & 15 \div 3=5
\end{array}
$$

Division

- We will focus our study on division when investigating the properties of integers.
- As division is not always possible to result an integer. Ex. $9 \div 4=2.25$

Division

- We will focus our study on division when investigating the properties of integers.
- As division is not always possible to result an integer. Ex. 9 $94=2.25$
- Division is widely used in modern cryptography as an inverse operation for the multiplication.

Division

- We will focus our study on division when investigating the properties of integers.
- As division is not always possible to result an integer. Ex. $9 \div 4=2.25$
- Division is widely used in modern cryptography as an inverse operation for the multiplication.

Number theory

Number theory is a branch of mathematics concerned with the study of integers. It forms the mathematical basis for modern cryptography.

What is Division

- What does it means a is divisible by b ?

What is Division

- What does it means a is divisible by b ?
- A naive answer if the rational number $\frac{a}{b}$ is an integer say k, then a is divisible by b.
- But what does it means $\frac{a}{b}$ is an integer?

What is Division

- What does it means a is divisible by b ?
- A naive answer if the rational number $\frac{a}{b}$ is an integer say k, then a is divisible by b.
- But what does it means $\frac{a}{b}$ is an integer?
- It means a can be written as a product of two intgers one of them is b.

What is Division

- What does it means a is divisible by b ?
- A naive answer if the rational number $\frac{a}{b}$ is an integer say k, then a is divisible by b.
- But what does it means $\frac{a}{b}$ is an integer?
- It means a can be written as a product of two intgers one of them is b.
- Or, $\mathrm{a}=\mathrm{k} \times \mathrm{b}$

What is Division

- What does it means a is divisible by b ?
- A naive answer if the rational number $\frac{a}{b}$ is an integer say k, then a is divisible by b.
- But what does it means $\frac{a}{b}$ is an integer?
- It means a can be written as a product of two intgers one of them is b.
- Or, $\mathrm{a}=\mathrm{k} \times \mathrm{b}$
- Then, $\frac{a}{b}=k$

What is Division

- What does it means a is divisible by b ?
- A naive answer if the rational number $\frac{a}{b}$ is an integer say k, then a is divisible by b.
- But what does it means $\frac{a}{b}$ is an integer?
- It means a can be written as a product of two intgers one of them is b.
- Or, a $=\mathrm{k} \times \mathrm{b}$
- Then, $\frac{a}{b}=k$
- We call b is factor or divisor of a.

What is Division

- What does it means a is divisible by b ?
- A naive answer if the rational number $\frac{a}{b}$ is an integer say k, then a is divisible by b.
- But what does it means $\frac{a}{b}$ is an integer?
- It means a can be written as a product of two intgers one of them is b.
- Or, a $=\mathrm{k} \times \mathrm{b}$
- Then, $\frac{a}{b}=k$
- We call b is factor or divisor of a.

What is Division

- What does it means a is divisible by b ?
- A naive answer if the rational number $\frac{a}{b}$ is an integer say k, then a is divisible by b.
- But what does it means $\frac{a}{b}$ is an integer?
- It means a can be written as a product of two intgers one of them is b.
- Or, a $=\mathrm{k} \times \mathrm{b}$
- Then, $\frac{a}{b}=k$
- We call b is factor or divisor of a.

Divisibality
a is divisible by b (or b divides a) denoted by $b \mid a$ if there is an integer k such that $a=k \times b$

Divisibality

- $b \mid a$ read as b divides a.
- a can be divided into k groups each of size b if the division is possible.

5 groups each of size 3
 $\mathrm{k}=5$

Excercise

Indicate whether each expression is true or false.

- $8 \mid 40$

Excercise

Indicate whether each expression is true or false.

- 8 | 40
- True

Excercise

Indicate whether each expression is true or false.

- 8 | 40
- True
- 7 | 50

Excercise

Indicate whether each expression is true or false.

- 8 | 40
- True
- 7 | 50
- False

Excercise

Indicate whether each expression is true or false.

- $8 \mid 40$
- True
- 7 | 50
- False
- $6+36$

Excercise

Indicate whether each expression is true or false.

- $8 \mid 40$
- True
- 7 | 50
- False
- $6+36$
- False

Excercise

Indicate whether each expression is true or false.

- $8 \mid 40$
- True
- 7 | 50
- False
- $6+36$
- False
- $-2 \mid 10$

Excercise

Indicate whether each expression is true or false.

- $8 \mid 40$
- True
- 7 | 50
- False
- $6+36$
- False
- -2 | 10
- True

Excercise

Indicate whether each expression is true or false.

- $8 \mid 40$
- True
- 7 | 50
- False
- $6+36$
- False
- $-2 \mid 10$
- True
- 3 |-10

Excercise

Indicate whether each expression is true or false.

- $8 \mid 40$
- True
- 7 | 50
- False
- $6+36$
- False
- $-2 \mid 10$
- True
- 3 |-10
- False

Divisibality

- What if b can not divided a ?

The division algorithm

Theorem
Let n be an integer and let d be a positive integer. Then, there are unique integers q and r, with $0 \leq r \leq d-1$, such that $n=q d+r$.

Ex.

- $\frac{16}{3} \Rightarrow 16=5(3)+1$

The division algorithm

Theorem

Let n be an integer and let d be a positive integer. Then, there are unique integers q and r, with $0 \leq r \leq d-1$, such that $n=q d+r$.

Ex.

- $\frac{16}{3} \Rightarrow 16=5(3)+1$
- quotient $=5$ and remainder $=1$

The division algorithm

Theorem

Let n be an integer and let d be a positive integer. Then, there are unique integers q and r, with $0 \leq r \leq d-1$, such that $n=q d+r$.

Ex.

- $\frac{16}{3} \Rightarrow 16=5(3)+1$
- quotient $=5$ and remainder $=1$

The division algorithm

Theorem

Let n be an integer and let d be a positive integer. Then, there are unique integers q and r, with $0 \leq r \leq d-1$, such that $n=q d+r$.

Ex.

- $\frac{16}{3} \Rightarrow 16=5(3)+1$
- quotient $=5$ and remainder $=1$
- $\frac{-16}{3} \Rightarrow-16=(-6)(3)+2$

The division algorithm

Theorem

Let n be an integer and let d be a positive integer. Then, there are unique integers q and r, with $0 \leq r \leq d-1$, such that $n=q d+r$.

Ex.

- $\frac{16}{3} \Rightarrow 16=5(3)+1$
- quotient $=5$ and remainder $=1$
- $\frac{-16}{3} \Rightarrow-16=(-6)(3)+2$
- quotient $=-6$ and remainder $=2$

The division algorithm

Theorem

Let n be an integer and let d be a positive integer. Then, there are unique integers q and r, with $0 \leq r \leq d-1$, such that $n=q d+r$.

Ex.

- $\frac{16}{3} \Rightarrow 16=5(3)+1$
- quotient $=5$ and remainder $=1$
- $\frac{-16}{3} \Rightarrow-16=(-6)(3)+2$
- quotient $=-6$ and remainder $=2$

The division algorithm

Theorem

Let n be an integer and let d be a positive integer. Then, there are unique integers q and r, with $0 \leq r \leq d-1$, such that $n=q d+r$.

Ex.

- $\frac{16}{3} \Rightarrow 16=5(3)+1$
- quotient $=5$ and remainder $=1$
- $\frac{-16}{3} \Rightarrow-16=(-6)(3)+2$
- quotient $=-6$ and remainder $=2$

We say

- $16 \operatorname{div} 3=5 \quad$ (quotient)

The division algorithm

Theorem

Let n be an integer and let d be a positive integer. Then, there are unique integers q and r, with $0 \leq r \leq d-1$, such that $n=q d+r$.

Ex.

- $\frac{16}{3} \Rightarrow 16=5(3)+1$
- quotient $=5$ and remainder $=1$
- $\frac{-16}{3} \Rightarrow-16=(-6)(3)+2$
- quotient $=-6$ and remainder $=2$

We say

- 16 div $3=5 \quad$ (quotient)
- $16 \bmod 3=1 \quad$ (remainder)

The division algorithm

Theorem

Let n be an integer and let d be a positive integer. Then, there are unique integers q and r, with $0 \leq r \leq d-1$, such that $n=q d+r$.

Ex.

- $\frac{16}{3} \Rightarrow 16=5(3)+1$
- quotient $=5$ and remainder $=1$
- $\frac{-16}{3} \Rightarrow-16=(-6)(3)+2$
- quotient $=-6$ and remainder $=2$

We say

- 16 div $3=5 \quad$ (quotient)
- $16 \bmod 3=1 \quad$ (remainder)

The division algorithm

Theorem

Let n be an integer and let d be a positive integer. Then, there are unique integers q and r, with $0 \leq r \leq d-1$, such that $n=q d+r$.

Ex.

- $\frac{16}{3} \Rightarrow 16=5(3)+1$
- quotient $=5$ and remainder $=1$
- $\frac{-16}{3} \Rightarrow-16=(-6)(3)+2$
- quotient $=-6$ and remainder $=2$

We say

- 16 div $3=5 \quad$ (quotient)
- $16 \bmod 3=1 \quad$ (remainder)

Note that
We are dealing with positive divisors, thus the remainder is always positive

Computing div and mod.

$$
\text { Compute } 15 \bmod 6=3 \quad 2 * 6+3=15
$$

$$
15 \operatorname{div} 6=2
$$

range for $\mathrm{n} \bmod 6$ is $\{0,1,2,3,4,5\}$
Note that
Remainder is always positive i.e., $0 \leq r \leq d-1$

Computing div and mod for positive number.

$$
\text { Compute }-11 \bmod 4=1 \quad-3 * 4+1=-11
$$

-11 div $4=-3$

range for $n \bmod 4$ is $\{0,1,2,3\}$

Note that
Remainder is always positive i.e., $0 \leq r \leq d-1$

Excercise

(1) $344 \bmod 5$

Excercise

(1) $344 \bmod 5$

- $344=68 \times 5+4$, so $344 \bmod 5=4$.
(2) $344 \operatorname{div} 5$

Excercise

(1) $344 \bmod 5$

- $344=68 \times 5+4$, so $344 \bmod 5=4$.
(2) $344 \operatorname{div} 5$
- $344=68 \times 5+4$, so $344 \operatorname{div} 5=68$.
(3) $-344 \bmod 5$

Excercise

(1) $344 \bmod 5$

- $344=68 \times 5+4$, so $344 \bmod 5=4$.
(2) $344 \operatorname{div} 5$
- $344=68 \times 5+4$, so $344 \operatorname{div} 5=68$.
(3) $-344 \bmod 5$

$$
\text { - }(-344)=(-69) \times 5+1, \text { so }(-344) \bmod 5=1 \text {. }
$$

(9) $-344 \operatorname{div} 5$

Excercise

(1) $344 \bmod 5$

- $344=68 \times 5+4$, so $344 \bmod 5=4$.
(2) $344 \operatorname{div} 5$
- $344=68 \times 5+4$, so $344 \operatorname{div} 5=68$.
(3) $-344 \bmod 5$
- $(-344)=(-69) \times 5+1$, so $(-344) \bmod 5=1$.
(9) -344 div 5
- $(-344)=(-69) \times 5+1$, so $(-344) \operatorname{div} 5=-69$.

Excercise

Determine the value of n based on the given information.

- $\mathrm{n} \operatorname{div} 7=11, \mathrm{n} \bmod 7=5$

Excercise

Determine the value of n based on the given information.

- $\mathrm{n} \operatorname{div} 7=11, \mathrm{n} \bmod 7=5$
- $\mathrm{n}=11^{*} 7+5=82$

Excercise

Determine the value of n based on the given information.

- $\mathrm{n} \operatorname{div} 7=11, \mathrm{n} \bmod 7=5$
- $\mathrm{n}=11^{*} 7+5=82$
- $n \operatorname{div} 5=-10, n \bmod 5=4$

Excercise

Determine the value of n based on the given information.

- $\mathrm{n} \operatorname{div} 7=11, \mathrm{n} \bmod 7=5$
- $\mathrm{n}=11^{*} 7+5=82$
- $n \operatorname{div} 5=-10, n \bmod 5=4$
- $n=-10 * 5+4=-46$

Excercise

Determine the value of n based on the given information.

- $\mathrm{n} \operatorname{div} 7=11, \mathrm{n} \bmod 7=5$
- $n=11^{*} 7+5=82$
- $n \operatorname{div} 5=-10, n \bmod 5=4$
- $n=-10 * 5+4=-46$
- $\mathrm{n} \operatorname{div} 10=2, \mathrm{n} \bmod 10=8$

Excercise

Determine the value of n based on the given information.

- $\mathrm{n} \operatorname{div} 7=11, \mathrm{n} \bmod 7=5$
- $n=11^{*} 7+5=82$
- $n \operatorname{div} 5=-10, n \bmod 5=4$
- $\mathrm{n}=-10 * 5+4=-46$
- $\mathrm{n} \operatorname{div} 10=2, \mathrm{n} \bmod 10=8$
- $\mathrm{n}=10 * 2+8$

Excercise

Determine the value of n based on the given information.

- $\mathrm{n} \operatorname{div} 7=11, \mathrm{n} \bmod 7=5$
- $n=11^{*} 7+5=82$
- $n \operatorname{div} 5=-10, n \bmod 5=4$
- $n=-10 * 5+4=-46$
- $\mathrm{n} \operatorname{div} 10=2, \mathrm{n} \bmod 10=8$
- $\mathrm{n}=10 * 2+8$
- $\mathrm{n} \operatorname{div} 11=-3, \mathrm{n} \bmod 11=7$

Excercise

Determine the value of n based on the given information.

- $\mathrm{n} \operatorname{div} 7=11, \mathrm{n} \bmod 7=5$
- $n=11^{*} 7+5=82$
- $n \operatorname{div} 5=-10, n \bmod 5=4$
- $n=-10 * 5+4=-46$
- $\mathrm{n} \operatorname{div} 10=2, \mathrm{n} \bmod 10=8$
- $\mathrm{n}=10 * 2+8$
- n div $11=-3, \mathrm{n} \bmod 11=7$
- $\mathrm{n}=11^{*}(-3)+7=-26$

Excercise

- For which values of n is n div $7=3$?

Excercise

- For which values of n is n div $7=3$?
- $\mathrm{n}=3 * 7+\mathrm{r}$, for any integer r in the range from 0 through 6 . $\mathrm{n}=21,22,23,24,25,26$, and 27.

Excercise

- For which values of n is n div $7=3$?
- $n=3 * 7+r$, for any integer r in the range from 0 through 6 . $n=21,22,23,24,25,26$, and 27 .
- For which values of n is n div $4=2$?

Excercise

- For which values of n is n div $7=3$?
- $n=3 * 7+r$, for any integer r in the range from 0 through 6 . $\mathrm{n}=21,22,23,24,25,26$, and 27 .
- For which values of n is n div $4=2$?
- $n=2 * 4+r$, for any integer r in the range from 0 through 3 . $\mathrm{n}=8,9,10,11$.

Excercise

- For which values of n is n div $7=3$?
- $n=3 * 7+r$, for any integer r in the range from 0 through 6 . $n=21,22,23,24,25,26$, and 27.
- For which values of n is n div $4=2$?
- $n=2 * 4+r$, for any integer r in the range from 0 through 3 . $n=8,9,10,11$.
- For which values of n is $\mathrm{n} \operatorname{div} 5=-6$?

Excercise

- For which values of n is n div $7=3$?
- $n=3 * 7+r$, for any integer r in the range from 0 through 6 . $\mathrm{n}=21,22,23,24,25,26$, and 27 .
- For which values of n is n div $4=2$?
- $n=2 * 4+r$, for any integer r in the range from 0 through 3 . $n=8,9,10,11$.
- For which values of n is $\mathrm{n} \operatorname{div} 5=-6$?
- $\mathrm{n}=-6 * 5+\mathrm{r}$, for any integer r in the range from 0 through 4 . $\mathrm{n}=-30,-29,-28,-27$, and -26 .

Divisibility and linear combinations

- A linear combination of two numbers is the sum of multiples of those numbers. For example, $3 x-7 y$ and $-2 x+4 y$ are both linear combinations of x and y.

Divisibility and linear combinations

- A linear combination of two numbers is the sum of multiples of those numbers. For example, $3 x-7 y$ and $-2 x+4 y$ are both linear combinations of x and y.

Theorem

if z divides x (i.e., $z \mid x$) and z divides y (i.e., $z \mid y$), then z divides any linear combination of x and y (i.e., $z \mid a x+b y$).

Divisibility and linear combinations

- A linear combination of two numbers is the sum of multiples of those numbers. For example, $3 x-7 y$ and $-2 x+4 y$ are both linear combinations of x and y.

Theorem

if z divides x (i.e., $z \mid x$) and z divides y (i.e., $z \mid y$), then z divides any linear combination of x and y (i.e., $z \mid a x+b y$).

Ex.

if 2 divides 10 and 2 divdes 20
Then 2 divdes any number in the form 10a+20b for any a and b.

Excercise

- Does 6 divides 462 given that the number 462 is a linear combination of 12 and $18(19 * 12+13 * 18=462)$.

Excercise

- Does 6 divides 462 given that the number 462 is a linear combination of 12 and $18\left(19 * 12+13^{*} 18=462\right)$.
- Yes

Outline

(1) The Division Algorithm

(2) Modular Arithmetic

(3) Prime factorizations

(4) Primality Test

Modular Arithmetic

- In modular arithmetic, numbers "wrap around" upon reaching a given fixed quantity (this given quantity is known as the modulus) to leave a remainder.
- Imagine we are doing the arithmetic on circle instead of the number line.
- In modulo N, the result of any arithmetic operation takes values from 0 to $\mathrm{N}-1$.

The 12-hour clock : modulo 12
If the time is 9:00 now, then 4 hours later it will be 1:00

$$
9+4=13
$$

$13 \% 12=1$

Modular Arithmetic

- 1:00 and 13:00 hours are the same
- 1:00 and 25:00 hours are the same
- $1 \equiv 13 \bmod 12$
- $13 \equiv 25 \bmod 12$

$$
\mathrm{a} \equiv \mathrm{~b} \bmod \mathrm{n}
$$

- n is the modulus
- a is congruent to b modulo n
- $a \bmod n=b \bmod n$
- a-b is an integer multiple of n (i.e., $n \mid(a-b)$)

Example

- $38 \equiv 14 \bmod 12$

Example

- $38 \equiv 14 \bmod 12$
- 38-14 = 24 ; multiple of 12
- $38 \equiv 2 \bmod 12$

Example

- $38 \equiv 14 \bmod 12$
- 38-14 = 24; multiple of 12
- $38 \equiv 2 \bmod 12$
- 38-2 $=36$; multiple of 12

The same rule apply for negative numbers.

- $-8 \equiv 7 \bmod 5$

Example

- $38 \equiv 14 \bmod 12$
- 38-14 = 24; multiple of 12
- $38 \equiv 2 \bmod 12$
- 38-2 $=36$; multiple of 12

The same rule apply for negative numbers.

- $-8 \equiv 7 \bmod 5$
- $2 \equiv-3 \bmod 5$

Example

- $38 \equiv 14 \bmod 12$
- 38-14 = 24; multiple of 12
- $38 \equiv 2 \bmod 12$
- 38-2 $=36$; multiple of 12

The same rule apply for negative numbers.

- $-8 \equiv 7 \bmod 5$
- $2 \equiv-3 \bmod 5$
- $-3 \equiv-8 \bmod 5$

Example

- $38 \equiv 14 \bmod 12$
- 38-14 = 24; multiple of 12
- $38 \equiv 2 \bmod 12$
- 38-2 $=36$; multiple of 12

The same rule apply for negative numbers.

- $-8 \equiv 7 \bmod 5$
- $2 \equiv-3 \bmod 5$
- $-3 \equiv-8 \bmod 5$

Congurence Class Example

Integers modulo 5 can take values from $\{0,1,2,3,4\}$
$0 \equiv 5 \equiv 10 \equiv 15 \ldots \bmod 5$
$1 \equiv 6 \equiv 11 \equiv 16 \ldots \bmod 5$
$2 \equiv 7 \equiv 12 \equiv 17 \ldots \bmod 5$
$3 \equiv 8 \equiv 13 \equiv 18 \ldots \bmod 5$
$4 \equiv 9 \equiv 14 \equiv 19 \ldots \bmod 5$
We call the previous property as congurence class relation modulo 5 .

Ring

Ring

The set $\{0,1,2, \ldots, \mathrm{~m}-1\}$ along with addition and multiplication $\bmod \mathrm{m}$ defines a closed mathematical system with m elements called a ring Z_{m}.

Ex.

Ring

Ring

The set $\{0,1,2, \ldots, \mathrm{~m}-1\}$ along with addition and multiplication mod m defines a closed mathematical system with m elements called a ring Z_{m}.

Ex.

- The set $Z_{13}=\{0,1,2, \ldots, 12\}$ is an arithmetic system modulo 13.
- The set $Z_{17}=\{0,1,2, \ldots, 16\}$ is an arithmetic system modulo 17 .

Modular Arithmetic Operations

Addition
$[x+y] \bmod m=[(x \bmod m)+(y \bmod m)] \bmod m$
Multiplication
$\left[x^{*} y\right] \bmod m=[(x \bmod m) *(y \bmod m)] \bmod m$

Exponentiation
$x^{n} \bmod m=\left[(x \bmod m)^{n}\right] \bmod m$

Excercise 1

Calculate the following:

- $(72 \times(-65)+211) \bmod 7$

Excercise 1

Calculate the following:

- $(72 \times(-65)+211) \bmod 7$
- $(72 \times(-65)+211) \bmod 7=((72 \bmod 7) \times(-65 \bmod 7)+(211 \bmod$ 7)) $\bmod 7=(2 \times 5+1) \bmod 7=11 \bmod 7=4$

Excercise 1

Calculate the following:

- $(72 \times(-65)+211) \bmod 7$
- $(72 \times(-65)+211) \bmod 7=((72 \bmod 7) \times(-65 \bmod 7)+(211 \bmod$ 7)) $\bmod 7=(2 \times 5+1) \bmod 7=11 \bmod 7=4$
- $38^{7} \bmod 3$

Excercise 1

Calculate the following:

- $(72 \times(-65)+211) \bmod 7$
- $(72 \times(-65)+211) \bmod 7=((72 \bmod 7) \times(-65 \bmod 7)+(211 \bmod$ 7)) $\bmod 7=(2 \times 5+1) \bmod 7=11 \bmod 7=4$
- $38^{7} \bmod 3$
- $(38 \bmod 3)^{7}=(2 \bmod 3)^{7}=(2 \bmod 3)^{5} *(2 \bmod 3)^{2}=$ $(32 \bmod 3) *(4 \bmod 3)=2 \bmod 3$

Excercise 1

Calculate the following:

- $(72 \times(-65)+211) \bmod 7$
- $(72 \times(-65)+211) \bmod 7=((72 \bmod 7) \times(-65 \bmod 7)+(211 \bmod$ 7)) $\bmod 7=(2 \times 5+1) \bmod 7=11 \bmod 7=4$
- $38^{7} \bmod 3$
- $(38 \bmod 3)^{7}=(2 \bmod 3)^{7}=(2 \bmod 3)^{5} *(2 \bmod 3)^{2}=$ $(32 \bmod 3) *(4 \bmod 3)=2 \bmod 3$
- $44^{12} \bmod 6$

Excercise 1

Calculate the following:

- $(72 \times(-65)+211) \bmod 7$
- $(72 \times(-65)+211) \bmod 7=((72 \bmod 7) \times(-65 \bmod 7)+(211 \bmod$ 7)) $\bmod 7=(2 \times 5+1) \bmod 7=11 \bmod 7=4$
- $38^{7} \bmod 3$
- $(38 \bmod 3)^{7}=(2 \bmod 3)^{7}=(2 \bmod 3)^{5} *(2 \bmod 3)^{2}=$ $(32 \bmod 3) *(4 \bmod 3)=2 \bmod 3$
- $44^{12} \bmod 6$
- $(44 \bmod 6)^{12}=(2 \bmod 6)^{12}=\left(2^{6} \bmod 6\right)^{2}=(64 \bmod 6)^{2}$ $=(4 \bmod 6)^{2}=4$

Excercise 1

Calculate the following:

- $(72 \times(-65)+211) \bmod 7$
- $(72 \times(-65)+211) \bmod 7=((72 \bmod 7) \times(-65 \bmod 7)+(211 \bmod$ 7) $) \bmod 7=(2 \times 5+1) \bmod 7=11 \bmod 7=4$
- $38^{7} \bmod 3$
- $(38 \bmod 3)^{7}=(2 \bmod 3)^{7}=(2 \bmod 3)^{5} *(2 \bmod 3)^{2}=$ $(32 \bmod 3) *(4 \bmod 3)=2 \bmod 3$
- $44^{12} \bmod 6$
- $(44 \bmod 6)^{12}=(2 \bmod 6)^{12}=\left(2^{6} \bmod 6\right)^{2}=(64 \bmod 6)^{2}$ $=(4 \bmod 6)^{2}=4$
- $46^{30} \bmod 9$

Excercise 1

Calculate the following:

- $(72 \times(-65)+211) \bmod 7$
- $(72 \times(-65)+211) \bmod 7=((72 \bmod 7) \times(-65 \bmod 7)+(211 \bmod$ 7)) $\bmod 7=(2 \times 5+1) \bmod 7=11 \bmod 7=4$
- $38^{7} \bmod 3$
- $(38 \bmod 3)^{7}=(2 \bmod 3)^{7}=(2 \bmod 3)^{5} *(2 \bmod 3)^{2}=$ $(32 \bmod 3) *(4 \bmod 3)=2 \bmod 3$
- $44^{12} \bmod 6$
- $(44 \bmod 6)^{12}=(2 \bmod 6)^{12}=\left(2^{6} \bmod 6\right)^{2}=(64 \bmod 6)^{2}$ $=(4 \bmod 6)^{2}=4$
- $46^{30} \bmod 9$
- $(46 \bmod 9)^{30} \bmod 9=\left(1^{30}\right) \bmod 9=1 \bmod 9=1$

Excercise 2

Compute $3^{1000} \bmod 7$

Excercise 2

Compute $3^{1000} \bmod 7$
3^{1000} is hard to compute by hand but can we learn anything from trying small modular exponents of 3 ? (You can use calculator)

Excercise 2

Compute $3^{1000} \bmod 7$
3^{1000} is hard to compute by hand but can we learn anything from trying small modular exponents of 3 ? (You can use calculator)

Excercise 2

Compute $3^{1000} \bmod 7$
3^{1000} is hard to compute by hand but can we learn anything from trying small modular exponents of 3 ? (You can use calculator)
$3^{1} \bmod 7=3$

Excercise 2

Compute $3^{1000} \bmod 7$
3^{1000} is hard to compute by hand but can we learn anything from trying small modular exponents of 3 ? (You can use calculator)
$3^{1} \bmod 7=3$
$3^{2} \bmod 7=2$

Excercise 2

Compute $3^{1000} \bmod 7$
3^{1000} is hard to compute by hand but can we learn anything from trying small modular exponents of 3 ? (You can use calculator)
$3^{1} \bmod 7=3$
$3^{2} \bmod 7=2$
$3^{3} \bmod 7=6$

Excercise 2

Compute $3^{1000} \bmod 7$
3^{1000} is hard to compute by hand but can we learn anything from trying small modular exponents of 3 ? (You can use calculator)
$3^{1} \bmod 7=3$
$3^{2} \bmod 7=2$
$3^{3} \bmod 7=6$
$3^{4} \bmod 7=4$

Excercise 2

Compute $3^{1000} \bmod 7$
3^{1000} is hard to compute by hand but can we learn anything from trying small modular exponents of 3 ? (You can use calculator)
$3^{1} \bmod 7=3$
$3^{2} \bmod 7=2$
$3^{3} \bmod 7=6$
$3^{4} \bmod 7=4$
$3^{5} \bmod 7=5$

Excercise 2

Compute $3^{1000} \bmod 7$
3^{1000} is hard to compute by hand but can we learn anything from trying small modular exponents of 3 ? (You can use calculator)

$$
\begin{aligned}
3^{1} \bmod 7 & =3 & 3^{1000} \bmod 7 & =3^{6 * 166+4} \bmod 7 \\
3^{2} \bmod 7 & =2 & & =\left[3^{6 * 166} \bmod 7 \times 3^{4} \bmod 7\right] \bmod 7 \\
3^{3} \bmod 7 & =6 & & =\left[\left[3^{6} \bmod 7\right]^{166} \bmod 7\right] \times\left[3^{4} \bmod 7\right] \bmod 7 \\
3^{4} \bmod 7 & =4 & & =\left[[1 \bmod 7]^{166} \bmod 7\right] \times\left[3^{4} \bmod 7\right] \bmod 7 \\
3^{5} \bmod 7 & =5 & & =1 \times\left[3^{4} \bmod 7\right] \bmod 7 \\
3^{6} \bmod 7 & =1 & & =4
\end{aligned}
$$

Outline

(1) The Division Algorithm

(2) Modular Arithmetic

(3) Prime factorizations

4. Primality Test

Prime VS Composite Numbers

Prime Number

A prime number p is an integer that can be divided, without a remainder, only by itself and by 1 .

Ex.

$$
2,3,5,7,11,13
$$

Composite Number
A positive integer is composite if it has a factor/divisor other than 1 or itself.

Ex.

$$
\begin{aligned}
& 14=2 \times 7 \\
& 10=2 \times 5 \\
& 35=5 \times 7
\end{aligned}
$$

The Fundamental Theorem of Arithmetic

Theorem

Every positive integer other than 1 can be expressed uniquely as a product of prime numbers where the prime factors are written in increasing order.

Ex.
$1078=2 \times 7^{2} \times 11$
The factors of 1078 are $2,7,11$

- The multiplicity of 2 is 1
- The multiplicity of 7 is 2
- The multiplicity of 11 is 1

Excercise

Give the prime factorization for each number.

- 32

Excercise

Give the prime factorization for each number.

- 32
- 2^{5}

Excercise

Give the prime factorization for each number.

- 32
- 2^{5}
- 42

Excercise

Give the prime factorization for each number.

- 32
- 2^{5}
- 42
- $2 \times 3 \times 7$

Excercise

Give the prime factorization for each number.

- 32
- 2^{5}
- 42
- $2 \times 3 \times 7$
- 84

Excercise

Give the prime factorization for each number.

- 32
- 2^{5}
- 42

$$
\text { - } 2 \times 3 \times 7
$$

- 84
- $2^{2} \times 3 \times 7$

Excercise

Give the prime factorization for each number.

- 32
- 2^{5}
- 42

$$
\text { - } 2 \times 3 \times 7
$$

- 84
- $2^{2} \times 3 \times 7$
- 36

Excercise

Give the prime factorization for each number.

- 32
- 2^{5}
- 42

$$
\text { - } 2 \times 3 \times 7
$$

- 84
- $2^{2} \times 3 \times 7$
- 36
- $2^{2} \times 3^{2}$

Greatest common divisor

GCD
The greatest common divisor (gcd) of non-zero integers x and y is the largest positive integer that is a factor of both x and y.

Ex.
GCD of 12 and 30

- Divisors of 12 are: $1,2,3,4,6$ and 12

Greatest common divisor

GCD
The greatest common divisor (gcd) of non-zero integers x and y is the largest positive integer that is a factor of both x and y.

Ex.
GCD of 12 and 30

- Divisors of 12 are: $1,2,3,4,6$ and 12
- Divisors of 30 are: $1,2,3,5,6,10,15$ and 30

Greatest common divisor

GCD
The greatest common divisor (gcd) of non-zero integers x and y is the largest positive integer that is a factor of both x and y.

Ex.
GCD of 12 and 30

- Divisors of 12 are: $1,2,3,4,6$ and 12
- Divisors of 30 are: $1,2,3,5,6,10,15$ and 30

Greatest common divisor

GCD

The greatest common divisor (gcd) of non-zero integers x and y is the largest positive integer that is a factor of both x and y.

Ex.
GCD of 12 and 30

- Divisors of 12 are: $1,2,3,4,6$ and 12
- Divisors of 30 are: $1,2,3,5,6,10,15$ and 30

The Greatest Common Divisor of 12 and 30 is $\mathbf{6}$.

Least Common Multiple

LCM
The least common multiple (lcm) of non-zero integers x and y is the smallest positive integer that is an integer multiple of both x and y.

Ex.
LCM of 3 and 5:

- The multiples of 3 are: $3,6,9,12,15,18, \ldots$ etc

Least Common Multiple

LCM

The least common multiple (lcm) of non-zero integers x and y is the smallest positive integer that is an integer multiple of both x and y.

Ex.

LCM of 3 and 5:

- The multiples of 3 are: $3,6,9,12,15,18, \ldots$ etc
- The multiples of 5 are: $5,10, \mathbf{1 5}, 20,25, \ldots$ etc

Least Common Multiple

LCM

The least common multiple (lcm) of non-zero integers x and y is the smallest positive integer that is an integer multiple of both x and y.

Ex.

LCM of 3 and 5:

- The multiples of 3 are: $3,6,9,12,15,18, \ldots$ etc
- The multiples of 5 are: $5,10, \mathbf{1 5}, 20,25, \ldots$ etc

Least Common Multiple

LCM
The least common multiple (lcm) of non-zero integers x and y is the smallest positive integer that is an integer multiple of both x and y.

Ex.
LCM of 3 and 5:

- The multiples of 3 are: $3,6,9,12,15,18, \ldots$ etc
- The multiples of 5 are: $5,10,15,20,25, \ldots$ etc

The Least Common Multiple of 3 and 5 is $\mathbf{1 5}$

Calculating GCD and LCM Using Prime Factors

Let x and y be two positive integers with prime factorizations expressed using a common set of primes as:

$$
\begin{aligned}
& \mathrm{x}=p_{1}^{a_{1}} \times p_{2}^{a_{2}} \times \ldots p_{n}^{a_{n}} \\
& \mathrm{y}=p_{1}^{b_{1}} \times p_{2}^{b_{2}} \times \ldots p_{n}^{b_{n}}
\end{aligned}
$$

$\operatorname{GCD}(\mathrm{x}, \mathrm{y})=p_{1}^{\min \left(a_{1}, b_{1}\right)} \times p_{2}^{\min \left(a_{2}, b_{2}\right)} \times \ldots p_{n}^{\min \left(a_{n}, b_{n}\right)}$
$\operatorname{LCM}(\mathrm{x}, \mathrm{y})=p_{1}^{\max \left(a_{1}, b_{1}\right)} \times p_{2}^{\max \left(a_{2}, b_{2}\right)} \times \ldots p_{n}^{\max \left(a_{n}, b_{n}\right)}$

Excercise

Some numbers and their prime factorizations are given below.

- $532=2^{2} \times 7 \times 19$
- $648=2^{3} \times 3^{4}$
- $1083=3 \times 19^{2}$
- $15435=3^{2} \times 5 \times 7^{3}$

Use these prime factorizations to compute the following quantities.
(1) $\operatorname{gcd}(532,15435)$
(2) $\operatorname{gcd}(648,1083)$
(3) $\operatorname{Icm}(532,1083)$
(9) $\operatorname{lcm}(1083,15435)$

Outline

(1) The Division Algorithm

(2) Modular Arithmetic

(3) Prime factorizations
(4) Primality Test

Checking a number is prime

- Primality test is an approach used to determine if a number \mathbf{N} is prime.

Checking a number is prime

- Primality test is an approach used to determine if a number \mathbf{N} is prime.
(1) Iterate over numbers from 2 to $\mathrm{N}-1$

Checking a number is prime

- Primality test is an approach used to determine if a number \mathbf{N} is prime.
(1) Iterate over numbers from 2 to $\mathrm{N}-1$
(2) If N is not divisible by any of these numbers then N is prime

Checking a number is prime

- Primality test is an approach used to determine if a number \mathbf{N} is prime.
(1) Iterate over numbers from 2 to $\mathrm{N}-1$
(2) If N is not divisible by any of these numbers then N is prime

Checking a number is prime

- Primality test is an approach used to determine if a number \mathbf{N} is prime.
(1) Iterate over numbers from 2 to $\mathrm{N}-1$
(2) If N is not divisible by any of these numbers then N is prime

Ex.

- How many checks you have to do to check if 23 is prime?
- 21 checks.

Checking a number is prime

Theorem

If N is a composite number, then N has a factor greater than 1 and at most \sqrt{N}

Checking a number is prime

Theorem
If N is a composite number, then N has a factor greater than 1 and at most \sqrt{N}
(1) Iterate over numbers from 2 to \sqrt{N}
(2) If N is not divisible by any of these numbers then N is prime Ex.

- How many checks you have to do to check if 23 is prime using this theorem?
- $\sqrt{23}$ checks ≈ 5.
- very efficient if N is large

The Prime Number Theorem

Theorem
let $\pi(x)$ be the number of prime numbers in the range from 2 through x. Then

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \ln (x)}=1
$$

Ex

Excercise

Consider a random integer selected from the range from 2 to 1,000,000,000,000 Approximately, what are the chances that the selected number is prime?

Questions \mathcal{R}

