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Introduction

Introduction

Function

A function f that maps elements of a set X to elements of a set Y, is a
subset of X × Y such that for every x ∈ X , there is exactly one y ∈ Y for
which (x, y) ∈ f
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Introduction

Arrow Diagram of Function

f: X → Y means f is a function from X to Y.

The set X is called the domain of f.

The set Y is the target of f.
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Introduction

Excercise

Let sets A and X are defined as:

A = { a, b, c, d }
X = { 1, 2, 3, 4 }

A function f ∶ A→ X is defined to be
f = { (a, 3), (b, 1), (c, 4), (d, 1) }
Ex.

What is the target of function f?

X = { 1, 2, 3, 4 }
What is the domain of f?

A = { a, b, c, d }
What is f(c)?

4
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Introduction

Well defined function

Well defined function

f should map every element in the domain to exactly one element in the
target to be well defined function.

(Well Defined Function)
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Introduction

Excercise

Let sets A and X are defined as:

A = { a, b, c, d }
X = { 1, 2, 3, 4 }

Ex.

Which of the following sets could be the correct function definition
for g ∶ X → A?

{(a,1), (b,4), (c ,2), (d ,3)}
{(1, a), (2,d), (2,b), (4, c)}
{(1, a), (3,b), (4, c)}
{(1, a), (2,b), (3,b), (4,b)}

{(1, a), (2,b), (3,b), (4,b)}
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Introduction

Excercise

Are the expressions below well-defined functions from R to R?

f (x) = 1
x−1

The function f is not well-defined for x = 1.

f (x) =
√
x2 + 2

well-defined

f (x) = ±
√
x2 + 2

The function h does not have a well-defined value for every real
number x.
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Introduction

Range

Range

For function f: X → Y, an element y is in the range of f if and only if there
is an x ∈ X such that (x, y) ∈ f.

Range: {a, c, d}
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Introduction

Excercise

Given a function f described below:

What is the domain of f?

{a, b, c, d, e}
What is the target of f?

{w, x, y, z}

What is the range of f?

{w, y, z}
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Introduction

Excercise on Function Range

Express the range of each function using roster notation.

Let A = {2, 3, 4, 5}.
f: A → Z such that f(x) = 2x - 1.

{3, 5, 7, 9}
Let A = {2, 3, 4, 5}.
f: A x A → Z, where f(x,y) = x+y.

{4, 5, 6, 7, 8, 9, 10}
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Introduction

Function Equality

Two functions, f and g, are equal if

f and g have the same domain.

f and g have the same target.

f(x) = g(x) for every element x in the domain.
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Introduction

Excercise on Function Equality

Ex. Indicate if f and g are equal fuctions

f: Z → Z, where f(x) = x2

g: Z → Z, where g(x) = ∣x ∣2.

f = g

f: R → Z, where f(x) = x2

g: Z → Z, where g(x) = x2.

f ≠ g different domains

f: Z → Z, where f(x) = x3

g: Z → Z, where g(x) = ∣x ∣3.

f ≠ g because, f(-2) = -8, and g(-2) = 8.

f: Z x Z → Z, where f(x,y) = ∣x + y ∣
g: Z x Z → Z, where g(x,y) = ∣x ∣ + ∣y ∣.

f ≠ g because, f(-2,2) = 0, and g(-2,2) = 4.
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Outline

1 Introduction

2 Floor and Cieling

3 Function Properties

4 Function Inverse

5 Composition of Functions

August 25, 2020 15 / 40



Floor and Cieling

Floor and Ceiling Functions

Express the range of each function using roster notation.

Floor function

The floor function maps a real number to the nearest integer in the
downward direction.

floor: R → Z
floor(x) = ⌊x⌋

Cieling function

The floor function maps a real number to the nearest integer in the
upward direction.

ceil: R → Z
ceil(x) = ⌈x⌉
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Floor and Cieling

Examples
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Function Properties

Function properties (In formal definations)

One-to-one

Every element in the target is covered by one or less elements from the
domain.

Onto

Every element in the target is covered by one or more elements from the
domain.

Bijective

Every element in the target is covered by exactly one element from the
domain.
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Function Properties

Function Properties Examples
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Function Properties

Function Properties (Formal definations)

One-to-one

A function f: X → Y is one-to-one or injective if x1 ≠ x2 implies that f(x1)
≠ f(x2).

Onto

A function f: X → Y is onto or surjective if the range of f is equal to the
target Y.

Bijective

A function is bijective or (one-to-one correspondence) if it is both
one-to-one and onto.
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Function Properties

Excercise

For each of the functions below, indicate whether the function is
onto, one-to-one, neither or both. If the function is not onto or not
one-to-one, give an example showing why.

Ex.

f: R → R. f(x) = x2

Not onto.
Not one to one.

f: R → R. f(x) = x3

One to one
Onto.

h: Z → Z. h(x) = x3

Not onto.
One to one.

f: Z → Z. f(x) = x − 4

Onto.
One to one.

f: Z → Z. f(x) = 5x − 4

One-to-one
Not onto.
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Function Properties

Excercise

For each of the functions below, indicate whether the function is onto, one-
to-one, neither or both.
Ex.

f ∶ {0,1}3 → {0,1}3. The output of f is obtained by taking the input
string and replacing the first bit by 1, regardless of whether the first
bit is a 0 or 1. For example, f(001) = 101 and f(110) = 110

Neither one-to-one nor onto.

f ∶ {0,1}3 → {0,1}3. The output of f is obtained by taking the input
string and reversing the bits. For example f(011) = 110.

One-to-one and onto.
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Function Properties

Relative sizes of the domain and target
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Function Properties

Excercise

Let f be a function whose domain is {0,1}3 and whose target is
{0,1}2.

Ex.

Is it possible that f is one-to-one?

No

Is it possible that f is onto?

Yes
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Function Inverse

Function Inverse

If a function f: X → Y is a bijection, then the inverse of f is obtained
by exchanging the first and second entries in each pair in f.

The inverse of f is denoted by f −1

f −1 = { (y, x) : (x, y) ∈ f }.
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Function Inverse

Example 1
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Function Inverse

Example 2
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Function Inverse

Excercise

For each of the following functions, indicate whether the function has
a well-defined inverse. If the inverse is well-defined, give the
input/output relationship of f−1.

Ex.

f: R → R. f(x) = x2

Not onto.
Not one to one.
f−1 is not well defined

f: R → R. f(x) = x3

One to one
Onto.
f−1(x) = 3

√
x

h: Z → Z. h(x) = x3

Not onto.
One to one.
f−1 is not well defined

f: Z → Z. f(x) = x − 4

Onto.
One to one.
f−1(x) = x + 4

f: Z → Z. f(x) = 5x − 4

One-to-one
Not onto.
f−1 is not well defined

August 25, 2020 30 / 40
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f−1 is not well defined
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Excercise

For each of the following functions, indicate whether the function has
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Function Inverse

Excercise

f ∶ {0,1}3 → {0,1}3. The output of is obtained by taking the input string
and reversing the bits. For example, f (011) = 110

Indicate whether f has a well-defined inverse and write f−1 if exists.

Sol:

f has a well-defined inverse.

f−1 = f
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Composition of Functions

Composition of functions

Composition of functions

Let f: X → Y and g: Y → Z.
The composition of g with f, denoted g ○ f, is the function (g ○ f): X → Z,
such that for all x ∈ X, (g ○ f)(x) = g(f(x)).

August 25, 2020 33 / 40



Composition of Functions

Example
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Composition of Functions

Excercise

What is the domain of g ○ f?

X = {v, w, x, y, z}
What is the target of g ○ f?

S = {1, 2, 3, 4, 5}

Give the arrow diagram for g ○ f.

What is the range of g ○ f?

{1, 3, 4}
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Composition of Functions

Notes I

f ○ g is not the same as g ○ f .

Ex.

f: R+ → R+, f(x) = x3

g: R+ → R+, g(x) = x + 2

(f ○ g)(x) = f (g(x)) = (x + 2)3
(g ○ f )(x) = g(f (x)) = x3 + 2
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Composition of Functions

Notes II

It is possible to compose more than two functions.

Composition is associative.

f ○ g ○ h = (f ○ g) ○ h = f ○ (g ○ h) = f (g(h(x)))

Ex.

f: R+ → R+, f(x) = x3

g: R+ → R+, g(x) = x + 2
h: R+ → R+, h(x) = x − 1

(f ○ g)(x) = f (g(x)) = (x + 2)3
(f ○ g ○ h)(x) = f (g(h(x))) = (x + 1)3
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Composition of Functions

Identity Function

Identity Function

The identity function always maps a set onto itself and maps every
element onto itself.

The identity function on A, denoted IA ∶ A→ A, is defined as
IA(a) = a, for all a ∈ A.

Note That

Let f: A→ B be a bijection. Then f −1 ○ f = IA and f ○ f −1 = IB .
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Composition of Functions

Example
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Questions
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