ECEN 227 - Introduction to Finite Automata and Discrete Mathematics

Dr. Mahmoud Nabil mnmahmoud@ncat.edu

North Carolina A & T State University

Talk Overview

Introduction

- Ploor and Cieling
- 3 Function Properties
- 4 Function Inverse
- **5** Composition of Functions

3

Outline

- 2 Floor and Cieling
- 3 Function Properties
- 4 Function Inverse
- 5 Composition of Functions

э

Introduction

Function

A function f that maps elements of a set X to elements of a set Y, is a subset of $X \times Y$ such that for every $x \in X$, there is exactly one $y \in Y$ for which $(x, y) \in f$

(日)

Arrow Diagram of Function

f: $X \rightarrow A$

X = { w, x, y, z } A = { a, b, c, d } f = { (w, a), (x, a), (y, d), (z, c) }

(日) (四) (日) (日) (日)

• f: $X \rightarrow Y$ means f is a function from X to Y.

э

Arrow Diagram of Function

f: $X \rightarrow A$

X = { w, x, y, z } A = { a, b, c, d } f = { (w, a), (x, a), (y, d), (z, c) }

- f: $X \rightarrow Y$ means f is a function from X to Y.
- The set X is called the domain of f.

Arrow Diagram of Function

f: $X \rightarrow A$

X = { w, x, y, z } A = { a, b, c, d } f = { (w, a), (x, a), (y, d), (z, c) }

- f: $X \rightarrow Y$ means f is a function from X to Y.
- The set X is called the domain of f.
- The set Y is the target of f.

- 4 回 ト 4 ヨ ト 4 ヨ

Let sets A and X are defined as:

$$A = \{ a, b, c, d \} \\ X = \{ 1, 2, 3, 4 \}$$

A function $f : A \to X$ is defined to be $f = \{ (a, 3), (b, 1), (c, 4), (d, 1) \}$ Ex.

- What is the target of function f?
 - X = { 1, 2, 3, 4 }
- What is the domain of f?

• A =
$$\{ a, b, c, d \}$$

• What is f(c)?

A (10) < A (10) < A (10)</p>

Well defined function

Well defined function

f should map every element in the domain to exactly one element in the target to be well defined function.

X = { w, x, y, z } A = { a, b, c, d } f = { (w, a), (x, a), (y, d), (z, c) }

(Well Defined Function)

▲ □ ▶ ▲ □ ▶ ▲ □

Well defined function

Well defined function

f should map every element in the domain to exactly one element in the target to be well defined function.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Well defined function

Well defined function

f should map every element in the domain to exactly one element in the target to be well defined function.

f is no longer a function because (y, b), (y, d) \in f.

(Not a Function)

▲ □ ▶ ▲ □ ▶ ▲ □

Let sets A and X are defined as:

$$\begin{array}{l} \mathsf{A} = \{ \text{ a, b, c, d} \} \\ \mathsf{X} = \{ \text{ 1, 2, 3, 4} \} \end{array}$$

Ex.

 Which of the following sets could be the correct function definition for g : X → A?

•
$$\{(a,1), (b,4), (c,2), (d,3)\}$$

•
$$\{(1,a), (2,d), (2,b), (4,c)\}$$

- $\{(1,a),(3,b),(4,c)\}$
- $\{(1,a),(2,b),(3,b),(4,b)\}$

Let sets A and X are defined as:

$$\begin{array}{l} \mathsf{A} = \{ \text{ a, b, c, d} \} \\ \mathsf{X} = \{ \text{ 1, 2, 3, 4} \} \end{array}$$

Ex.

 Which of the following sets could be the correct function definition for g : X → A?

•
$$\{(a,1),(b,4),(c,2),(d,3)\}$$

•
$$\{(1,a), (2,d), (2,b), (4,c)\}$$

•
$$\{(1,a),(3,b),(4,c)\}$$

• $\{(1,a),(2,b),(3,b),(4,b)\}$

 $\{(1,a),(2,b),(3,b),(4,b)\}$

Are the expressions below well-defined functions from R to R?

- $f(x) = \frac{1}{x-1}$ • The function f is not well-defined for x = 1.
- $f(x) = \sqrt{x^2 + 2}$
 - well-defined

•
$$f(x) = \pm \sqrt{x^2 + 2}$$

• The function h does not have a well-defined value for every real number x.

3

Range

Range

For function f: $X \rightarrow Y$, an element y is in the range of f if and only if there is an $x \in X$ such that $(x, y) \in f$.

 $X = \{ w, x, y, z \}$ A = { a, b, c, d } f = { (w, a), (x, a), (y, d), (z, c) }

< □ > < 同 > < 回 > < Ξ > < Ξ

Range: $\{a, c, d\}$

Given a function f described below:

• What is the domain of f?

イロト イヨト イヨト イヨト

э

Given a function f described below:

- What is the domain of f?
 - {a, b, c, d, e}

3

Given a function f described below:

What is the domain of f?
{a, b, c, d, e}

• What is the target of f?

э

Given a function f described below:

- What is the domain of f?
 - {a, b, c, d, e}
- What is the target of f?
 - $\left\{w,\;x,\;y,\;z\right\}$

< A → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 → < 3 →

э

Given a function f described below:

- What is the domain of f?
 - {a, b, c, d, e}
- What is the target of f?
 - {w, x, y, z}
- What is the range of f?

< 1 k

Given a function f described below:

August 25, 2020

11 / 40

- What is the domain of f?
 - $\{a, b, c, d, e\}$
- What is the target of f?
 - {w, x, y, z}
- What is the range of f?
 - {w, y, z}

Excercise on Function Range

Express the range of each function using roster notation.

イロト イポト イヨト イヨト

3

12 / 40

Excercise on Function Range

Express the range of each function using roster notation.

イロト イポト イヨト イヨト

3

12 / 40

• Let
$$A = \{2, 3, 4, 5\}$$
.
f: $A \rightarrow Z$ such that $f(x) = 2x - 1$.
• $\{3, 5, 7, 9\}$
• Let $A = \{2, 3, 4, 5\}$

f: A x A
$$\rightarrow$$
 Z, where f(x,y) = x+y.

Excercise on Function Range

Express the range of each function using roster notation.

イロト イポト イヨト イヨト

3

12 / 40

Function Equality

Two functions, f and g, are equal if

- f and g have the same domain.
- f and g have the same target.
- f(x) = g(x) for every element x in the domain.

3

Excercise on Function Equality

Ex. Indicate if f and g are equal fuctions

• f: Z
$$\rightarrow$$
 Z, where f(x) = x^2
g: Z \rightarrow Z, where g(x) = $|x|^2$.

イロト イポト イヨト イヨト

э

Excercise on Function Equality

Ex. Indicate if f and g are equal fuctions

• f: Z
$$\rightarrow$$
 Z, where f(x) = x^2
g: Z \rightarrow Z, where g(x) = $|x|^2$.
• f = g

• **f**:
$$\mathbb{R} \to \mathbb{Z}$$
, where $f(x) = x^2$
g: $\mathbb{Z} \to \mathbb{Z}$, where $g(x) = x^2$.

イロト イポト イヨト イヨト

э

æ

14 / 40

August 25, 2020

イロト イポト イヨト イヨト

Excercise on Function Equality

Ex. Indicate if f and g are equal fuctions

• f: Z
$$\rightarrow$$
 Z, where f(x) = x^2
g: Z \rightarrow Z, where g(x) = $|x|^2$.
• f = g

• f:
$$\mathbb{R} \to \mathbb{Z}$$
, where $f(x) = x^2$
g: $\mathbb{Z} \to \mathbb{Z}$, where $g(x) = x^2$.
• $f \neq g$ different domains

• **f**:
$$Z \rightarrow Z$$
, where $f(x) = x^3$
g: $Z \rightarrow Z$, where $g(x) = |x|^3$.

Excercise on Function Equality

Ex. Indicate if f and g are equal fuctions

• f: Z
$$\rightarrow$$
 Z, where f(x) = x^2
g: Z \rightarrow Z, where g(x) = $|x|^2$.
• f = g

• **f**:
$$\mathbb{R} \to \mathbb{Z}$$
, where $f(x) = x^2$
g: $\mathbb{Z} \to \mathbb{Z}$, where $g(x) = x^2$.

• *f* ≠ *g* different domains

g: $Z \times Z \rightarrow Z$, where g(x,y) = |x| + |y|.

イロト イポト イヨト イヨト 二日

Excercise on Function Equality

Ex. Indicate if f and g are equal fuctions

• f: Z
$$\rightarrow$$
 Z, where f(x) = x²
g: Z \rightarrow Z, where g(x) = $|x|^2$.
• f = g

• **f**:
$$\mathbb{R} \to \mathbb{Z}$$
, where $f(x) = x^2$
g: $\mathbb{Z} \to \mathbb{Z}$, where $g(x) = x^2$.

• $f \neq g$ different domains

g:
$$Z \times Z \rightarrow Z$$
, where $g(x,y) = |x| + |y|$.

• $f \neq g$ because, f(-2,2) = 0, and g(-2,2) = 4.

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへの

Outline

- Function Properties
- 4 Function Inverse
- 5 Composition of Functions

э

Floor and Ceiling Functions

Express the range of each function using roster notation.

Floor function

The floor function maps a real number to the nearest integer in the downward direction.

floor: $R \rightarrow Z$ floor(x) = $\lfloor x \rfloor$

Cieling function

The floor function maps a real number to the nearest integer in the upward direction.

ceil: $R \rightarrow Z$ ceil(x) = $\lceil x \rceil$

(日)

August 25, 2020

16/40

Examples

To compute the floor function slide *down* to nearest integer:

æ

イロト イヨト イヨト イヨト

Examples

To compute the ceiling function slide up to nearest integer:

・ロト ・四ト ・ヨト ・ヨト

3

Examples

The ceiling and floor of an integer are the same:

・ロト ・四ト ・ヨト ・ヨト

3

Outline

- 2 Floor and Cieling
- 3 Function Properties
 - 4 Function Inverse
 - 5 Composition of Functions

(日) (四) (日) (日) (日)

э

Function properties (In formal definations)

One-to-one

Every element in the target is covered by one or less elements from the domain.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Function properties (In formal definations)

One-to-one

Every element in the target is covered by one or less elements from the domain.

Onto

Every element in the target is covered by one or more elements from the domain.

Function properties (In formal definations)

One-to-one

Every element in the target is covered by one or less elements from the domain.

Onto

Every element in the target is covered by one or more elements from the domain.

Bijective

Every element in the target is covered by exactly one element from the domain.

f: $X \rightarrow A$

< □ > < 同 > < 回 > < 回 > < 回 >

f is not one-to-one because f(w) = f(z) = c

f is not one-to-one because f(w) = f(z) = c.

August 25, 2020 20 / 40

3

f: $X \rightarrow A$

< □ > < 同 > < 回 > < 回 > < 回 >

f is not onto because there are no elements in X that map to d or e

f is not onto because no elements in X map to d or e.

f: X \rightarrow A

X = { w, x, y, z } A = { a, b, c, d, e }

< □ > < 同 > < 回 > < 回 > < 回 >

э

20 / 40

August 25, 2020

Now f is one-to-one but not onto

Now f is one-to-one but not onto.

f: $X \rightarrow A$

X = { w, x, y, z } A = { a, b, c, d }

< □ > < 同 > < 回 > < 回 > < 回 >

August 25, 2020

20 / 40

Now f is one-to-one and onto

Now f is one-to-one and onto. f is a bijection.

Function Properties (Formal definations)

One-to-one

A function f: X \rightarrow Y is one-to-one or injective if $x_1 \neq x_2$ implies that $f(x_1) \neq f(x_2)$.

Function Properties (Formal definations)

One-to-one

A function f: X \rightarrow Y is one-to-one or injective if $x_1 \neq x_2$ implies that $f(x_1) \neq f(x_2)$.

Onto

A function f: $X \rightarrow Y$ is onto or surjective if the range of f is equal to the target Y.

Function Properties (Formal definations)

One-to-one

A function f: X \rightarrow Y is one-to-one or injective if $x_1 \neq x_2$ implies that $f(x_1) \neq f(x_2)$.

Onto

A function f: $X \rightarrow Y$ is onto or surjective if the range of f is equal to the target Y.

Bijective

A function is bijective or (one-to-one correspondence) if it is both one-to-one and onto.

• For each of the functions below, indicate whether the function is onto, one-to-one, neither or both. If the function is not onto or not one-to-one, give an example showing why.

< □ > < 同 > < 回 > < 回 > < 回 >

August 25, 2020

22 / 40

Ex.

• f: $R \rightarrow R$. $f(x) = x^2$

• For each of the functions below, indicate whether the function is onto, one-to-one, neither or both. If the function is not onto or not one-to-one, give an example showing why.

< □ > < 同 > < 回 > < 回 > < 回 >

August 25, 2020

22 / 40

Ex.

- f: $R \rightarrow R$. f(x) = x^2
 - Not onto.
 - Not one to one.
- f: $R \rightarrow R$. $f(x) = x^3$

• For each of the functions below, indicate whether the function is onto, one-to-one, neither or both. If the function is not onto or not one-to-one, give an example showing why.

Ex.

- f: $R \rightarrow R$. $f(x) = x^2$
 - Not onto.
 - Not one to one.

• f:
$$R \rightarrow R$$
. $f(x) = x^3$

- One to one
- Onto.

• h:
$$Z \rightarrow Z$$
. $h(x) = x^3$

- 日 ト - (同 ト - (三 ト - 4 三)

• For each of the functions below, indicate whether the function is onto, one-to-one, neither or both. If the function is not onto or not one-to-one, give an example showing why.

Ex.

- f: $R \rightarrow R$. $f(x) = x^2$
 - Not onto.
 - Not one to one.

• f:
$$R \rightarrow R$$
. $f(x) = x^3$

- One to one
- Onto.

• h:
$$Z \rightarrow Z$$
. $h(x) = x^3$

- Not onto.
- One to one.

- **(周) (3) (3)**

• For each of the functions below, indicate whether the function is onto, one-to-one, neither or both. If the function is not onto or not one-to-one, give an example showing why.

Ex.

• f:
$$R \rightarrow R$$
. $f(x) = x^2$

- Not onto.
- Not one to one.

• f:
$$R \rightarrow R$$
. $f(x) = x^3$

- One to one
- Onto.

• h:
$$Z \rightarrow Z$$
. $h(x) = x^3$

- Not onto.
- One to one.

• f:
$$Z \rightarrow Z$$
. f(x) = x - 4

(日本)

• For each of the functions below, indicate whether the function is onto, one-to-one, neither or both. If the function is not onto or not one-to-one, give an example showing why.

Ex.

- f: $R \rightarrow R$. $f(x) = x^2$
 - Not onto.
 - Not one to one.

• f:
$$R \rightarrow R$$
. $f(x) = x^3$

- One to one
- Onto.

• h:
$$Z \rightarrow Z$$
. $h(x) = x^3$

- Not onto.
- One to one.

- f: $Z \rightarrow Z$. f(x) = x 4
 - Onto.
 - One to one.
- f: $Z \rightarrow Z$. f(x) = 5x 4

イロト イポト イヨト イヨト 二日

• For each of the functions below, indicate whether the function is onto, one-to-one, neither or both. If the function is not onto or not one-to-one, give an example showing why.

Ex.

- f: $R \rightarrow R$. $f(x) = x^2$
 - Not onto.
 - Not one to one.

• f:
$$R \rightarrow R$$
. $f(x) = x^3$

- One to one
- Onto.

• h:
$$Z \rightarrow Z$$
. $h(x) = x^3$

- Not onto.
- One to one.

- f: $Z \rightarrow Z$. f(x) = x 4
 - Onto.
 - One to one.
- f: Z \rightarrow Z. f(x) = 5x 4
 - One-to-one
 - Not onto.

イロト イポト イヨト イヨト 二日

For each of the functions below, indicate whether the function is onto, one-to-one, neither or both.

Ex.

f: {0,1}³ → {0,1}³. The output of f is obtained by taking the input string and replacing the first bit by 1, regardless of whether the first bit is a 0 or 1. For example, f(001) = 101 and f(110) = 110

For each of the functions below, indicate whether the function is onto, one-to-one, neither or both.

Ex.

- f: {0,1}³ → {0,1}³. The output of f is obtained by taking the input string and replacing the first bit by 1, regardless of whether the first bit is a 0 or 1. For example, f(001) = 101 and f(110) = 110
 - Neither one-to-one nor onto.

(日) (四) (日) (日) (日)

For each of the functions below, indicate whether the function is onto, one-to-one, neither or both.

Ex.

- f: {0,1}³ → {0,1}³. The output of f is obtained by taking the input string and replacing the first bit by 1, regardless of whether the first bit is a 0 or 1. For example, f(001) = 101 and f(110) = 110
 - Neither one-to-one nor onto.
- f: {0,1}³ → {0,1}³. The output of f is obtained by taking the input string and reversing the bits. For example f(011) = 110.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For each of the functions below, indicate whether the function is onto, one-to-one, neither or both.

Ex.

- f: {0,1}³ → {0,1}³. The output of f is obtained by taking the input string and replacing the first bit by 1, regardless of whether the first bit is a 0 or 1. For example, f(001) = 101 and f(110) = 110
 - Neither one-to-one nor onto.
- f: {0,1}³ → {0,1}³. The output of f is obtained by taking the input string and reversing the bits. For example f(011) = 110.
 - One-to-one and onto.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Relative sizes of the domain and target

э

< □ > < 同 > < 回 > < 回 > < 回 >

• Let f be a function whose domain is $\{0,1\}^3$ and whose target is $\{0,1\}^2.$

Ex.

• Is it possible that f is one-to-one?

э

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Let f be a function whose domain is $\{0,1\}^3$ and whose target is $\{0,1\}^2.$

August 25, 2020

25 / 40

Ex.

- Is it possible that f is one-to-one?
 - No
- Is it possible that f is onto?

• Let f be a function whose domain is $\{0,1\}^3$ and whose target is $\{0,1\}^2.$

August 25, 2020

25 / 40

Ex.

- Is it possible that f is one-to-one?
 - No
- Is it possible that f is onto?
 - Yes

Outline

Introduction

- Floor and Cieling
- 3 Function Properties

4 Function Inverse

< □ > < 同 > < 回 > < 回 > < 回 >

э

Function Inverse

- If a function f: X → Y is a bijection, then the inverse of f is obtained by exchanging the first and second entries in each pair in f.
- The inverse of f is denoted by f^{-1}

$$f^{-1} = \{ (y, x) : (x, y) \in f \}.$$

イロト イポト イヨト イヨト

August 25, 2020

27 / 40

Example 1

3

イロト イポト イヨト イヨト

Example 2

イロト 不得 トイラト イラト 一日

• For each of the following functions, indicate whether the function has a well-defined inverse. If the inverse is well-defined, give the input/output relationship of f⁻¹.

Ex.

• f: $R \rightarrow R$. f(x) = x^2

3

< □ > < 同 > < 回 > < 回 > < 回 >

 For each of the following functions, indicate whether the function has a well-defined inverse. If the inverse is well-defined, give the input/output relationship of f⁻¹.

Ex.

• f:
$$R \rightarrow R$$
. f(x) = x^2

- Not onto.
- Not one to one.
- f⁻¹ is not well defined

• f: $R \rightarrow R$. f(x) = x^3

< ロト < 同ト < ヨト < ヨ

 For each of the following functions, indicate whether the function has a well-defined inverse. If the inverse is well-defined, give the input/output relationship of f⁻¹.

Ex.

• f:
$$R \rightarrow R$$
. f(x) = x^2

- Not onto.
- Not one to one.
- f⁻¹ is not well defined

• f:
$$R \rightarrow R$$
. $f(x) = x^3$

- One to one
- Onto.

•
$$f^{-1}(x) = \sqrt[3]{x}$$

• h: Z \rightarrow Z. $h(x) = x^3$

• For each of the following functions, indicate whether the function has a well-defined inverse. If the inverse is well-defined, give the input/output relationship of f⁻¹.

August 25, 2020

30 / 40

Ex.

• f:
$$R \rightarrow R$$
. f(x) = x^2

- Not onto.
- Not one to one.
- f^{-1} is not well defined

• f:
$$R \rightarrow R$$
. $f(x) = x^3$

- One to one
- Onto.

•
$$f^{-1}(x) = \sqrt[3]{x}$$

- h: $Z \rightarrow Z$. $h(x) = x^3$
 - Not onto.
 - One to one.
 - f⁻¹ is not well defined

 For each of the following functions, indicate whether the function has a well-defined inverse. If the inverse is well-defined, give the input/output relationship of f⁻¹.

Ex.

• f:
$$R \rightarrow R$$
. f(x) = x^2

- Not onto.
- Not one to one.
- f⁻¹ is not well defined

• f:
$$R \rightarrow R$$
. $f(x) = x^3$

- One to one
- Onto.
- $f^{-1}(x) = \sqrt[3]{x}$
- h: $Z \rightarrow Z$. $h(x) = x^3$
 - Not onto.
 - One to one.
 - f^{-1} is not well defined

• f:
$$Z \rightarrow Z$$
. f(x) = x - 4

3

く 目 ト く ヨ ト く ヨ ト

• For each of the following functions, indicate whether the function has a well-defined inverse. If the inverse is well-defined, give the input/output relationship of f⁻¹.

Ex.

• f:
$$R \rightarrow R$$
. f(x) = x^2

- Not onto.
- Not one to one.
- f⁻¹ is not well defined

• f:
$$R \rightarrow R$$
. $f(x) = x^3$

- One to one
- Onto.
- $f^{-1}(x) = \sqrt[3]{x}$
- h: $Z \rightarrow Z$. $h(x) = x^3$
 - Not onto.
 - One to one.
 - f⁻¹ is not well defined

• f:
$$Z \rightarrow Z$$
. f(x) = x - 4

- Onto.
- One to one.

•
$$f^{-1}(x) = x + 4$$

• f: Z \rightarrow Z. f(x) = 5x - 4

< □ > < □ > < □ > < □ > < □ > < □ >

August 25, 2020

30 / 40

• For each of the following functions, indicate whether the function has a well-defined inverse. If the inverse is well-defined, give the input/output relationship of f⁻¹.

Ex.

• f:
$$R \rightarrow R$$
. f(x) = x^2

- Not onto.
- Not one to one.
- f⁻¹ is not well defined

• f:
$$R \rightarrow R$$
. $f(x) = x^3$

- One to one
- Onto.
- $f^{-1}(x) = \sqrt[3]{x}$
- h: $Z \rightarrow Z$. $h(x) = x^3$
 - Not onto.
 - One to one.
 - f⁻¹ is not well defined

• f:
$$Z \rightarrow Z$$
. f(x) = x - 4

- Onto.
- One to one.
- $f^{-1}(x) = x + 4$
- f: Z \rightarrow Z. f(x) = 5x 4
 - One-to-one
 - Not onto.
 - f⁻¹ is not well defined

(日)

August 25, 2020

30 / 40

 $f: \{0,1\}^3 \rightarrow \{0,1\}^3$. The output of is obtained by taking the input string and reversing the bits. For example, f(011) = 110

• Indicate whether f has a well-defined inverse and write f^{-1} if exists.

< □ > < 同 > < 回 > < 回 > < 回 >

 $f: \{0,1\}^3 \rightarrow \{0,1\}^3$. The output of is obtained by taking the input string and reversing the bits. For example, f(011) = 110

• Indicate whether f has a well-defined inverse and write f^{-1} if exists.

< □ > < □ > < □ > < □ > < □ > < □ >

August 25, 2020

31 / 40

Sol:

- f has a well-defined inverse.
- $f^{-1} = f$

Outline

Introduction

- Floor and Cieling
- 3 Function Properties
- 4 Function Inverse

э

< □ > < 同 > < 回 > < 回 > < 回 >

Composition of functions

Composition of functions

Let f: $X \rightarrow Y$ and g: $Y \rightarrow Z$.

The composition of g with f, denoted $g \circ f$, is the function $(g \circ f): X \to Z$, such that for all $x \in X$, $(g \circ f)(x) = g(f(x))$.

Example

X = { 1, 2, 3 } Y = { a, b, c } Z = { 7, 10, 12 }

э

<ロト < 四ト < 三ト < 三ト

• What is the domain of $g \circ f$?

æ

イロト イヨト イヨト イヨト

• What is the domain of $g \circ f$?

•
$$X = \{v, w, x, y, z\}$$

æ

イロト イヨト イヨト イヨト

- What is the domain of g o f?
 X = {v, w, x, y, z}
- What is the target of g $\,\circ\,$ f?

3

э.

• • • • • • • • • •

< □ > < 同 > < 回 > < 回 > < 回 >

3

35 / 40

August 25, 2020

What is the domain of g ∘ f?
X = {v, w, x, y, z}
What is the target of g ∘ f?
S = {1, 2, 3, 4, 5}

э

35 / 40

August 25, 2020

Image: A matrix and A matrix

- What is the domain of g ∘ f?
 X = {v, w, x, y, z}
 What is the target of g ∘ f?
 S = {1, 2, 3, 4, 5}
- Give the arrow diagram for $g \circ f$.

- What is the domain of g ∘ f?
 X = {v, w, x, y, z}
- What is the target of $g \circ f$?

•
$$S = \{1, 2, 3, 4, 5\}$$

• Give the arrow diagram for $g \circ f$.

$$\begin{array}{c} v \bullet & 1 \\ w \bullet & 2 \\ x \bullet & 3 \\ y \bullet & 4 \\ z \bullet & 5 \\ \hline g \circ f: X \to S \end{array}$$

۲

< ⊡ > < ∃</p>

э

- What is the domain of g o f?
 X = {v, w, x, y, z}
 What is the target of g o f?
 S = {1, 2, 3, 4, 5}
 Give the arrow diagram for g o f.
 - **g** o f: $X \rightarrow S$
- What is the range of $g \circ f$?

< A >

< A > < E

August 25, 2020

35 / 40

What is the domain of g ∘ f?
X = {v, w, x, y, z}
What is the target of g ∘ f?
S = {1, 2, 3, 4, 5}
Give the arrow diagram for g ∘ f.
^{*}/₂

Notes I

• $f \circ g$ is not the same as $g \circ f$.

Ex.

f:
$$R^+ \to R^+$$
, $f(x) = x^3$
g: $R^+ \to R^+$, $g(x) = x + 2$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Notes II

- It is possible to compose more than two functions.
- Composition is associative.

$$f \circ g \circ h = (f \circ g) \circ h = f \circ (g \circ h) = f(g(h(x)))$$

Ex.

f:
$$R^+ \to R^+$$
, $f(x) = x^3$
g: $R^+ \to R^+$, $g(x) = x + 2$
h: $R^+ \to R^+$, $h(x) = x - 1$

•
$$(f \circ g)(x) = f(g(x)) = (x+2)^3$$

• $(f \circ g \circ h)(x) = f(g(h(x))) = (x+1)^3$

<ロ> <四> <四> <四> <四> <四</p>

Identity Function

Identity Function

The identity function always maps a set onto itself and maps every element onto itself.

• The identity function on A, denoted $I_A : A \to A$, is defined as $I_A(a) = a$, for all $a \in A$.

Note That

Let f: $A \to B$ be a bijection. Then $f^{-1} \circ f = I_A$ and $f \circ f^{-1} = I_B$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Example

The composition of f with the inverse of f has domain Y and target Y and maps each element to itself and is therefore the identity function on Y.

3

イロト イヨト イヨト イヨト

æ

40 / 40

August 25, 2020

