ECEN 227 - Introduction to Finite Automata and Discrete Mathematics

Dr. Mahmoud Nabil
mnmahmoud@ncat.edu
North Carolina A \& T State University

October 22, 2020

Talk Overview

(1) Algorithms
(2) Analysis of Algorithms
(3) Asymptotic growth of functions
(4) More on the Analysis of Algorithms
(5) Finite state machine

Outline

(1) Algorithms

(2) Analysis of Algorithms
(3) Asymptotic growth of functions

4 More on the Analysis of Algorithms

5 Finite state machine

Algorithms

Algorithm
An algorithm is a step-by-step method for solving a problem.

Pseudocode
Algorithms are often described in pseudocode, which is a language in between written English and a computer language.

Ex.

- A recipe is an example of an algorithm in which :
- Ingredients are the input.
- Final dish is the output.
- A sequence of steps to follow recipe.

Example

Algorithm 1 Sum of Three Numbers Algortihm NameThis algorithm finds the sum of three numbers Algortihm Description
Input: real numbers a,b, c Algorithm inputs
Output: Sum of a, b c Algorithm output
1: sum :=a+b+c Assignment operation (variable is given a value)
2: return sum The output of an algorithm is specified by return statement

Control flow statements

- The statements inside your algorithm (recipe) are generally executed from top to bottom, in the order that they appear.
- Control flow statements, however, break up the flow of execution by employing decision making, looping, and branching, enabling your program to conditionally execute particular blocks of statements.

Ex.

- If statement.
- If Else statement
- For loop statement.
- While loop.

If Statement

If Statement

An if-statement tests a condition, and executes one or more instructions if the condition evaluates to true.

Algorithm 2 If statement

if Condition1 then

. . .	Executed only if Condition1 is met
. . .	Executed only if Condition1 is met

end if
. . Executed normally

If Else Statement

If Else Statement
An if-else-statement tests a condition, executes one or more instructions if the condition evaluates to true, and executes a different set of instructions if the condition evaluates to false.

Algorithm 3 If else statement
if Condition1 then
... Executed only if Condition1 is met
else
. . . Executed only if Condition1 does not met
end if
. . .
Executed normally

Excercise 1

Give the value for 'abs' variable in the following cases.
$x:=2$
If $(x>0)$
Else $\quad:=x$
abs $:=-x$
End-if

```
x := -2
If ( x > 0)
    abs := x
Else
    abs := -x
End-if
```


Excercise 2

Give the value for min and max given x and y in the following cases.

$$
\begin{aligned}
& x:=3 \\
& y:=6 \\
& \text { If }(x<y) \\
& \min :=x \\
& \max :=y \\
& \text { Else } \\
& \text { min }:=y \\
& \max :=x \\
& \text { End-if }
\end{aligned}
$$

$$
x:=7
$$

$$
y:=2
$$

$$
\begin{aligned}
& \text { If }(x<y) \\
& \min :=x \\
& \max :=y \\
& \text { Else } \\
& \min :=y \\
& \max :=x \\
& \text { End-if }
\end{aligned}
$$

Excercise

Find the value of 'min' when

- $a=3, b=7, c=10$
- $a=7, b=3, c=10$
- $a=10, b=7, c=3$

Algorithm 4 Smallest of three

This algorithm finds the minumum of three numbers
Input: Real numbers a,b, c

1: $\min :=a$
2: if $b<\min$ then
3: $\min :=b$
4: end if
5: if $\mathrm{c}<\min$ then
6: $\quad \min :=c$
7: end if
8: return min

If Elseif Statement

If Else Statement

An if-else-statement tests a condition, executes one or more instructions if the condition evaluates to true, and executes a different set of instructions if the condition evaluates to false.

Algorithm 5 If else statement

if Condition1 then

\ldots
else if Condition2 then

Executed only if Condition2 is met and Condition1 does not met
else if Condition3 then
...
Executed only if Condition2 is met and both Condition1 and Condition2 does not met
end if
Executed normally

Example

Pseudocode

> if the score is 90 or above grade is an " A " else if the score is 80 or above grade is a " B "
> else if the score is 70 or above grade is a " C " else grade is an " F "

For Statement

```
For Statement
In a for-loop, a block of instructions is executed a fixed number of times as specified in the first line of the for-loop, which defines an index, a starting value for the index, and a final value for the index.
```


Algorithm 6 For statement

1: for $j=1$ to N do
2 :
Executed N times
3: end for
4: ...
Executed normally

Excercise

sum := 0 For $\mathrm{i}=2$ to 5 sum := sum +i End-for

- How many iterations will be executed? Name them.
- What is the final value for sum after executing the for-loop?

Example for

Execute the following algorithm and find the value of 'min' for thr following input: $a_{1}=5, a_{2}=3, a_{3}=-1, a_{4}=7$

Algorithm 7 Find smallest in sequence

Input:

1- Sequence of numbers $a_{1}, a_{2}, \ldots, a_{n}$
2- n number of inputs
Output: min
1: $\min :=a_{1}$
2: for $i=2$ to n do
3: if $a_{i}<\min$ then
4: $\quad \min :=a_{i}$
5: end if
6: end for
7: return min

While Statement

While Statement

A while-loop iterates an unknown number of times, ending when a certain condition becomes false.

```
Algorithm 8 While statement
    1: while Condition1 do
    2:
    ...Executed as long as Conditionl is met
    3: end while
    4: ...
    Executed normally
```


Excercise

```
product := 1
count := 5
While ( count > 0)
    product := product·count
    count := count - 2
End-while
```

- How many iterations will be executed?
- What is the final value for product?

Example While

Execute the following algorithm on $7,3,1,4$ and $x=1$, also for $x=2$
Algorithm 9 Search for a number in a sequence

Input:

1- Sequence of numbers $a_{1}, a_{2}, \ldots, a_{n}$
2- n number of inputs
3- x a number to search for
Output: Index of first occurence of x in the sequence or -1 if \times not found
1: i :=1
2: while $a_{i} \neq x$ and $i<n$ do
3: $\quad i:=i+1$
4: end while
5: if $a_{i}=x$ then
6: return i
7: end if
8: return -1

Neseted Loops

$$
\begin{aligned}
& \text { count }:=0 \\
& \text { For } \mathrm{i}=1 \text { to } 3 \\
& \text { For } \mathrm{j}=1 \text { to } 4 \\
& \quad \text { count }:=\text { count }+\mathrm{i} \cdot \mathrm{j} \\
& \text { End-for } \\
& \text { End-for }
\end{aligned}
$$

- How many times is the variable count increased?
- What is the final value of count?

Example Nested Loop

Find the final value of 'count' after execute the algorithm for $5,1,5,6$

Algorithm 10 Count duplicates

Input:

1- Sequence of numbers $a_{1}, a_{2}, \ldots, a_{n}$
2- n number of inputs
Output: count: the number of duplicate pairs
1: count $:=0$
2: for $\mathrm{i}:=1$ to $\mathrm{n}-1$ do
3: \quad for $\mathrm{j}:=\mathrm{i}+1$ to n do
4: if $a_{i}==a_{j}$ then
5: count $:=$ count +1
6: end if
7: end for
8: end for
9: return count

Excercise 1

Write an algorithm in pseudocode
Input: $a_{1}, a_{2}, \ldots, a_{n}$, a sequence of numbers, where $\mathrm{n} \geq 1$
n , the length of the sequence.
Output: Sum of the elements in the list.

Excercise 2

Write an algorithm in pseudocode
Input: $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{n}$, a sequence of numbers, where $\mathrm{n} \geq 1$
n , the length of the sequence.
Output: "True" if there are two consecutive numbers in the sequence that are the same and "False" otherwise.

Excercise 3

Write an algorithm in pseudocode
Input: $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{n}$, a sequence of numbers, where $\mathrm{n} \geq 1$ n , the length of the sequence.
Output: "True" if there are any two numbers in the sequence whose sum is 0 and "False" otherwise.

Excercise 4

Write an algorithm in pseudocode
Input: $a_{1}, a_{2}, \ldots, a_{n}$, a sequence of numbers, where $\mathrm{n} \geq 1$
n , the length of the sequence.
T , a target number.
Output: "True" if there are any two numbers in the sequence whose multiplication is T and "False" otherwise.

Outline

(1) Algorithms

(2) Analysis of Algorithms

(3) Asymptotic growth of functions

4 More on the Analysis of Algorithms
(5) Finite state machine

Time Complexity

```
Algorithm 11 Compute Sum
Input:
1- Sequence of numbers }\mp@subsup{a}{1}{},\mp@subsup{a}{2}{},\ldots,\mp@subsup{a}{n}{
2- n number of inputs
Output: Sum of the sequence
    1: sum := 0
    2: for i:= 1 to n do
    3: sum := sum + ai
    4: end for
    5: return sum
```

How much time this algorithm take?

Time Complexity

- Given an input of size n to the algorithm, what is the lower bound and the upper bound of the number of operations to be executed?

Time Complexity

- Given an input of size n to the algorithm, what is the lower bound and the upper bound of the number of operations to be executed?
- What are the operations we care for?
- Assignment operation
- Arithmetic operations.
- Comparison operation.
- Return statements.

Example Time Complexity

[^0]
Example Time Complexity

```
Algorithm 13 Compute Sum
Input:
1- Sequence of numbers }\mp@subsup{a}{1}{},\mp@subsup{a}{2}{},\ldots,\mp@subsup{a}{n}{
2- n number of inputs
Output: Sum of the sequence
    1: sum := 0 1 assignment op
    2: for i:= 1 to n For loop compare i and assign i (2 ops) do
    3: sum := sum + ai
    1 addition and 1 for assignment (2 ops)
4: end for
5: return sum
- Time Complexity \(=f(n)=\#\) of operations on a sequence of length \(n\) - \(\mathrm{f}(\mathrm{n})=1+2 \mathrm{n}+2 \mathrm{n}+1=4 \mathrm{n}+2\)

\section*{Time Complexity}
- In evaluating algorithms, the focus is on how the function \(f\) grows with n , ignoring small input sizes and constant factors that depend on the specifics of the implementation and have less impact on the execution time.

\section*{Time Complexity}
- In evaluating algorithms, the focus is on how the function \(f\) grows with n , ignoring small input sizes and constant factors that depend on the specifics of the implementation and have less impact on the execution time.
- Thus, we introduce the notion of the asymptotic time complexity.

\section*{Time Complexity}
- In evaluating algorithms, the focus is on how the function \(f\) grows with n , ignoring small input sizes and constant factors that depend on the specifics of the implementation and have less impact on the execution time.
- Thus, we introduce the notion of the asymptotic time complexity.

Asymptotic time complexity
Asymptotic time complexity of an algorithm is the rate of asymptotic growth of the algorithm's time complexity with the input size.

\section*{Outline}

\section*{(1) Algorithms}

\section*{(2) Analysis of Algorithms}
(3) Asymptotic growth of functions

\section*{4 More on the Analysis of Algorithms}
(5) Finite state machine

\section*{The asymptotic growth}

The asymptotic growth
The asymptotic growth of the function \(f\) is a measure of how fast the output \(f(n)\) grows as the input \(n\) grows.
- Three classification of functions using \(O, \Omega_{\text {,, and }} \Theta\) notation (called asymptotic notation).
- Asymptotic notation is a useful tool for evaluating the efficiency of algorithms.

\section*{The asymptotic growth}

(a)

(b)

(c)

\section*{Big O notation}

\section*{Big 0}

Let \(f\) and \(g\) be two functions from \(Z^{+}\)to \(Z^{+}\). Then \(f=O(g)\) if there are positive constants \(c\) and \(n_{0}\) such that for any \(n \geq n_{0}, f(n) \leq c . g(n)\).
\[
\begin{aligned}
& f(n)=2 n^{3}+3 n^{2}+7 \\
& g(n)=n^{3} \\
& \text { To prove } f \text { is } O(g) \text { Pick } c=3 \quad n_{0}=4
\end{aligned}
\]

The constants \(c\) and \(n_{0}\) in the definition of Oh-notation are said to be a witness to the fact that \(\mathrm{f}=\mathrm{O}(\mathrm{g})\).


\section*{Big O notation}
\[
\begin{aligned}
& \mathrm{f}(\mathrm{n})=3 n^{3}+5 n^{2}-7 \\
& \mathrm{~g}(\mathrm{n})=n^{3}
\end{aligned}
\]
\[
\text { Claim: } f=O(g)
\]
Proof.

Select \(\mathrm{c}=8\) and \(n_{0}=1\).

\section*{Big O notation}
\[
\begin{aligned}
& \mathrm{f}(\mathrm{n})=3 n^{3}+5 n^{2}-7 \\
& \mathrm{~g}(\mathrm{n})=n^{3}
\end{aligned}
\]
\[
\text { Claim: } f=O(g)
\]
Proof.

Select \(\mathrm{c}=8\) and \(n_{0}=1\).
- \(3 n^{3}+5 n^{2}-7 \leq 3 n^{3}+5 n^{2}\)

\section*{Big O notation}
\[
\begin{aligned}
& \mathrm{f}(\mathrm{n})=3 n^{3}+5 n^{2}-7 \\
& \mathrm{~g}(\mathrm{n})=n^{3}
\end{aligned}
\]

Claim: \(f=O(g)\).
Proof.
Select \(\mathrm{c}=8\) and \(n_{0}=1\).
- \(3 n^{3}+5 n^{2}-7 \leq 3 n^{3}+5 n^{2}\)
- \(3 n^{3}+5 n^{2}-7 \leq 3 n^{3}+5 n^{3}\)

\section*{Big O notation}
\[
\begin{aligned}
& \mathrm{f}(\mathrm{n})=3 n^{3}+5 n^{2}-7 \\
& \mathrm{~g}(\mathrm{n})=n^{3}
\end{aligned}
\]

Claim: \(f=O(g)\).
Proof.
Select \(\mathrm{c}=8\) and \(n_{0}=1\).
- \(3 n^{3}+5 n^{2}-7 \leq 3 n^{3}+5 n^{2}\)
- \(3 n^{3}+5 n^{2}-7 \leq 3 n^{3}+5 n^{3}\)
- \(3 n^{3}+5 n^{2}-7 \leq 8 n^{3}\)

\section*{Big O notation}
\[
\begin{aligned}
& \mathrm{f}(\mathrm{n})=3 n^{3}+5 n^{2}-7 \\
& \mathrm{~g}(\mathrm{n})=n^{3}
\end{aligned}
\]

Claim: \(\mathrm{f}=\mathrm{O}(\mathrm{g})\).
Proof.
Select \(\mathrm{c}=8\) and \(n_{0}=1\).
- \(3 n^{3}+5 n^{2}-7 \leq 3 n^{3}+5 n^{2}\)
- \(3 n^{3}+5 n^{2}-7 \leq 3 n^{3}+5 n^{3}\)
- \(3 n^{3}+5 n^{2}-7 \leq 8 n^{3}\)
- \(f(n) \leq 8 g(n)\)

\section*{Big O notation}
\[
\begin{aligned}
& \mathrm{f}(\mathrm{n})=3 n^{3}+5 n^{2}-7 \\
& \mathrm{~g}(\mathrm{n})=n^{3}
\end{aligned}
\]

Claim: \(\mathrm{f}=\mathrm{O}(\mathrm{g})\).
Proof.
Select \(\mathrm{c}=8\) and \(n_{0}=1\).
- \(3 n^{3}+5 n^{2}-7 \leq 3 n^{3}+5 n^{2}\)
- \(3 n^{3}+5 n^{2}-7 \leq 3 n^{3}+5 n^{3}\)
- \(3 n^{3}+5 n^{2}-7 \leq 8 n^{3}\)
- \(f(n) \leq 8 g(n)\)
- \(\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))\)

\section*{Big Omega notation}

\section*{Big Omega \(\Omega\)}

Let f and g be two functions from \(Z^{+}\)to \(Z^{+}\). Then \(\mathrm{f}=\Omega(\mathrm{g})\) if there are positive constants \(c\) and \(n_{0}\) such that for any \(n \geq n_{0}, f(n) \geq c . g(n)\).

The constants \(c\) and \(n_{0}\) in the definition of Oh-notation are said to be a witness to the fact that \(\mathrm{f}=\Omega(\mathrm{g})\).


\section*{Big Omega notation}
\[
\begin{aligned}
& \mathrm{f}(\mathrm{n})=\frac{1}{2} n^{2}+7 n+3 \\
& \mathrm{~g}(\mathrm{n})=n^{2}
\end{aligned}
\]

Claim: \(\mathrm{f}=\Omega(\mathrm{g})\).

\section*{Proof.}

Select \(\mathrm{c}=\frac{1}{2}\) and \(n_{0}=1\).
- \(\mathrm{n} \geq 0\)

\section*{Big Omega notation}
\[
\begin{aligned}
& \mathrm{f}(\mathrm{n})=\frac{1}{2} n^{2}+7 n+3 \\
& \mathrm{~g}(\mathrm{n})=n^{2}
\end{aligned}
\]

Claim: \(\mathrm{f}=\Omega(\mathrm{g})\).

\section*{Proof.}

Select \(\mathrm{c}=\frac{1}{2}\) and \(n_{0}=1\).
- \(\mathrm{n} \geq 0\)
- \(\frac{1}{2} n^{2}+7 n+3 \geq \frac{1}{2} n^{2}\)

\section*{Big Omega notation}
\[
\begin{aligned}
& \mathrm{f}(\mathrm{n})=\frac{1}{2} n^{2}+7 n+3 \\
& \mathrm{~g}(\mathrm{n})=n^{2}
\end{aligned}
\]

Claim: \(\mathrm{f}=\Omega(\mathrm{g})\).

\section*{Proof.}

Select \(\mathrm{c}=\frac{1}{2}\) and \(n_{0}=1\).
- \(\mathrm{n} \geq 0\)
- \(\frac{1}{2} n^{2}+7 n+3 \geq \frac{1}{2} n^{2}\)
- \(\mathrm{f}(\mathrm{n}) \geq \frac{1}{2} \mathrm{~g}(\mathrm{n})\)

\section*{Big Omega notation}
\[
\begin{aligned}
& \mathrm{f}(\mathrm{n})=\frac{1}{2} n^{2}+7 n+3 \\
& \mathrm{~g}(\mathrm{n})=n^{2}
\end{aligned}
\]

Claim: \(\mathrm{f}=\Omega(\mathrm{g})\).

\section*{Proof.}

Select \(\mathrm{c}=\frac{1}{2}\) and \(n_{0}=1\).
- \(\mathrm{n} \geq 0\)
- \(\frac{1}{2} n^{2}+7 n+3 \geq \frac{1}{2} n^{2}\)
- \(f(n) \geq \frac{1}{2} g(n)\)
- \(f(n)=\Omega(g(n))\)

\section*{Relationship of Oh-notation and \(\Omega\)-notation.}

Theorem
Let \(f\) and \(g\) be two functions from \(Z^{+}\)to \(Z^{+}\). Then \(f=\Omega(g)\) if and only if \(g=O(f)\).

\section*{\(\Theta\) Notation}

\section*{\(\Theta\) Notation}

Let f and g be two functions \(Z^{+}\)to \(Z^{+} . \mathrm{f}=\Theta(\mathrm{g})\) if \(\mathrm{f}=\mathrm{O}(\mathrm{g})\) and \(\mathrm{f}=\Omega(\mathrm{g})\).
Ex.
- \(f(n)=4 n^{3}+7 n+16 \quad 7 n\) and 16 are called the lower order terms
- \(\mathrm{f}(\mathrm{n})=\Theta\left(n^{3}\right)\)

Theorem
Let \(p(n)\) be a degree- \(k\) polynomial of the form in which \(a_{k}>0\).
\[
\left(a_{k}\right) n^{k}+\left(a_{k-1}\right) n^{k-1}+\ldots+\left(a_{1}\right) n+a_{0}
\]

Then \(p(n)\) is \(\Theta\left(n^{k}\right)\).

\section*{Algorithmic Complexity Function}
\begin{tabular}{|c|c|}
\hline Function & Name \\
\hline\(\Theta(1)\) & Constant \\
\hline\(\Theta(\log \log n)\) & Log log \\
\hline\(\Theta(\log n)\) & Logarithmic \\
\hline\(\Theta(n)\) & Linear \\
\hline\(\Theta(n \log n)\) & \(n\) log \(n\) \\
\hline\(\Theta\left(n^{2}\right)\) & Quadratic \\
\hline\(\Theta\left(n^{3}\right)\) & Cubic \\
\hline\(\Theta\left(c^{n}\right), c>1\) & Exponential \\
\hline\(\theta(n!)\) & Factorial \\
\hline
\end{tabular}

\section*{Algorithmic Complexity Function}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline\(f(n)\) & \(n=10\) & \(n=50\) & \(n=100\) & \(n=1000\) & \(n=10000\) & \(n=100000\) \\
\hline \(\log _{2} n\) & \(3.3 \mu \mathrm{~s}\) & \(5.6 \mu \mathrm{~s}\) & \(6.6 \mu \mathrm{~s}\) & \(10.0 \mu \mathrm{~s}\) & \(13.3 \mu \mathrm{~s}\) & \(16.6 \mu \mathrm{~s}\) \\
\hline\(n\) & \(10 \mu \mathrm{~s}\) & \(50 \mu \mathrm{~s}\) & \(100 \mu \mathrm{~s}\) & \(1000 \mu \mathrm{~s}\) & 10 ms & .1 s \\
\hline\(n \log _{2} n\) & .03 ms & .28 ms & .66 ms & 10.0 ms & .133 s & 1.67 s \\
\hline \(\mathrm{n}^{2}\) & .1 ms & 2.5 ms & 10 ms & 1 s & 100 s & 2.8 hours \\
\hline \(\mathrm{n}^{3}\) & 1 ms & .125 s & 1 s & 16.7 min & 11.6 days & 31.7 years \\
\hline \(2^{n}\) & 1.0 ms & 35.7 years & \(4.0 \times 10^{16}\) years & \(3.4 \times 10^{287}\) years & \(6.3 \times 10^{2996}\) years & \(\star\) \\
\hline
\end{tabular}

\section*{Excercise}

Characterize the rate of growth of each function \(f\) below by giving a function \(g\) such that \(f=\Theta(g)\).
- \(\mathrm{f}(\mathrm{n})=n^{8}+3 n-4\)

\section*{Excercise}

Characterize the rate of growth of each function \(f\) below by giving a function \(g\) such that \(f=\Theta(g)\).
- \(\mathrm{f}(\mathrm{n})=n^{8}+3 n-4\)
- \(\Theta\left(n^{8}\right)\)
- \(f(n)=2 * 3^{n}\)

\section*{Excercise}

Characterize the rate of growth of each function \(f\) below by giving a function \(g\) such that \(f=\Theta(g)\).
- \(\mathrm{f}(\mathrm{n})=n^{8}+3 n-4\)
- \(\Theta\left(n^{8}\right)\)
- \(f(n)=2 * 3^{n}\)
- \(\Theta\left(3^{n}\right)\)
- \(f(n)=2^{n}+3^{n}\)

\section*{Excercise}

Characterize the rate of growth of each function \(f\) below by giving a function \(g\) such that \(f=\Theta(g)\).
- \(\mathrm{f}(\mathrm{n})=n^{8}+3 n-4\)
- \(\Theta\left(n^{8}\right)\)
- \(f(n)=2 * 3^{n}\)
- \(\Theta\left(3^{n}\right)\)
- \(f(n)=2^{n}+3^{n}\)
- \(\Theta\left(3^{n}\right)\)
- \(\mathrm{f}(\mathrm{n})=9(n \log n)+5(\log \log n)+5\)

\section*{Excercise}

Characterize the rate of growth of each function \(f\) below by giving a function \(g\) such that \(f=\Theta(g)\).
- \(\mathrm{f}(\mathrm{n})=n^{8}+3 n-4\)
- \(\Theta\left(n^{8}\right)\)
- \(f(n)=2 * 3^{n}\)
- \(\Theta\left(3^{n}\right)\)
- \(f(n)=2^{n}+3^{n}\)
- \(\Theta\left(3^{n}\right)\)
- \(\mathrm{f}(\mathrm{n})=9(n \log n)+5(\log \log n)+5\)
- \(\Theta(n \log n)\)
- \(f(n)=n \log _{37} n\)

\section*{Excercise}

Characterize the rate of growth of each function \(f\) below by giving a function \(g\) such that \(f=\Theta(g)\).
- \(\mathrm{f}(\mathrm{n})=n^{8}+3 n-4\)
- \(\Theta\left(n^{8}\right)\)
- \(f(n)=2 * 3^{n}\)
- \(\Theta\left(3^{n}\right)\)
- \(f(n)=2^{n}+3^{n}\)
- \(\Theta\left(3^{n}\right)\)
- \(\mathrm{f}(\mathrm{n})=9(n \log n)+5(\log \log n)+5\)
- \(\Theta(n \log n)\)
- \(f(n)=n \log _{37} n\)
- \(\Theta(n \log n)\)
- \(\mathrm{f}(\mathrm{n})=n^{21}+(1.1)^{n}\)

\section*{Excercise}

Characterize the rate of growth of each function \(f\) below by giving a function \(g\) such that \(f=\Theta(g)\).
- \(\mathrm{f}(\mathrm{n})=n^{8}+3 n-4\)
- \(\Theta\left(n^{8}\right)\)
- \(f(n)=2 * 3^{n}\)
- \(\Theta\left(3^{n}\right)\)
- \(f(n)=2^{n}+3^{n}\)
- \(\Theta\left(3^{n}\right)\)
- \(f(n)=9(n \log n)+5(\log \log n)+5\)
- \(\Theta(n \log n)\)
- \(f(n)=n \log _{37} n\)
- \(\Theta(n \log n)\)
- \(\mathrm{f}(\mathrm{n})=n^{21}+(1.1)^{n}\)
- \(\Theta\left(1.1^{n}\right)\)

\section*{Outline}

\section*{(1) Algorithms}

\section*{(2) Analysis of Algorithms}
(3) Asymptotic growth of functions
4) More on the Analysis of Algorithms
(5) Finite state machine

\section*{Example 1}

Algorithm 14 Find smallest in sequence

\section*{Input:}

1- Sequence of numbers \(a_{1}, a_{2}, \ldots, a_{n}\)
2- \(n\) number of inputs
Output: Minumum of \(a_{1}, a_{2}, \ldots, a_{n}\)
1: \(\min :=a_{1} \quad 1\) assignment op
2: for \(i=2\) to \(n\)
For loop compare i and assign i \((2\) ops \()\) do
3: if \(a_{i}<\min \quad 1\) op for comparison +1 op (in worst-case) for assignment then
4: \(\quad \min :=a_{i}\)
5: end if
6: end for
7: return min
- \(\mathrm{f}(\mathrm{n})=4(\mathrm{n}-1)+2=\mathrm{c}(\mathrm{n}-1)+\mathrm{d}=\theta(n)\)

\section*{Example 2}

Algorithm 15 Search for a number \(\times\) in a sequence
Input: \(a_{1}, a_{2}, \ldots, a_{n}, n, x\)
Output: Index if found or -1 if not found
1: \(\mathrm{i}:=1\)
1 aasign op
2: while \(a_{i} \neq x\) and \(i<n \quad 3\) op \(=2\) compare and 1 logic and do
3: \(\mathrm{i}:=\mathrm{i}+1 \quad 2\) op \(=1\) add +1 assign (worst case)
4: end while
5: if \(a_{i}=x \quad 1\) compare op then
6: return i
1 return op
7: end if
8: return -1
- \(f(n)=\#\) of ops on sequence of length \(n\)
of(n) = \(\underbrace{c_{1}}_{\text {ops before loop }}+\underbrace{c_{2} n}_{\text {ops within the loop }}+\underbrace{c_{3}}_{\text {ops after loop }}=\Theta(n)\)

\section*{Worst-case complexity}
- The number of operations performed by the previous algorithm may depend on the actual data in the input sequence not just the sequence size.
- What if \(x\) is the first element in the sequence? Best Case
- What if x is the last element in the sequence or does not exist? Worst Case

\section*{Worst Case Complexity}

Worst-case time complexity
It is defined to be the maximum number of atomic operations the algorithm requires, where the maximum is taken over all inputs of size \(n\).
- Usually we care about the worst case in our analysis.

\section*{Worst Case Complexity}

Worst-case time complexity
It is defined to be the maximum number of atomic operations the algorithm requires, where the maximum is taken over all inputs of size \(n\).
- Usually we care about the worst case in our analysis.

\section*{Analysis of Nested Loop}
```

Algorithm 16 Count duplicates
Input: }\mp@subsup{a}{1}{},\mp@subsup{a}{2}{},···,\mp@subsup{a}{n}{},
Output: count: the number of duplicate pairs
1: count :=0
2: for i:= 1 to n-1 do
3: for j:= i + 1 to n do
4: if }\mp@subsup{a}{i}{}==\mp@subsup{a}{j}{}\mathrm{ then
5: count := count + 1
6: end if
7: end for
8: end for
9: return count

```

\section*{Analysis of Nested Loop}

Algorithm 17 Count duplicates
Input: \(a_{1}, a_{2}, \ldots, a_{n}, n\)
Output: count: the number of duplicate pairs
1: count \(:=0\)
2: for \(\mathrm{i}:=1\) to \(\mathrm{n}-1\) do
3: \(\quad\) for \(\mathrm{j}:=\mathrm{i}+1\) to n do
4: if \(a_{i}==a_{j}\) then
5: \(\quad\) count \(:=\) count +1
6: end if
7: end for
8: end for
9: return count
- \(f(n)=\)
\[
\underbrace{c}_{\text {er loop ops }}[(\mathrm{n}-1)+(\mathrm{n}-2)+\ldots+1]+\underbrace{[b+b+\cdots+b]}_{\mathrm{n}-1 \text { outer loop header }}+
\]
\[
\underbrace{d}
\]

\section*{Analysis of Nested Loop}
\(f(n)=\)
\[
\underbrace{c}_{\text {r loop ops }}[(\mathrm{n}-1)+(\mathrm{n}-2)+\ldots+1]+\underbrace{[b+b+\cdots+b]}_{\mathrm{n}-1 \text { outer loop }}+\underbrace{d}_{\text {before or after loops }}
\]

Note.
- \([(n-1)+(n-2)+\ldots+1]=\frac{n(n-1)}{2}\)
- \(\mathrm{f}(\mathrm{n})=c_{1} n^{2}+c_{2} n+c_{3}=\Theta\left(n^{2}\right)\)

\section*{Outline}

\section*{(1) Algorithms}

\section*{(2) Analysis of Algorithms}
(3) Asymptotic growth of functions

4 More on the Analysis of Algorithms
(5) Finite state machine

\section*{Introduction}
- FSMs are the simplest model of computation.
- Finite State Machines (FSMs) are (essentially) computers with very small memory
- FSMs are widely used in practice for simple mechanisms: automatic doors, lifts, microwave or washing machine controllers, and many other electromechanical devices.

\section*{Example}
- For example, in the case of a parking ticket machine, it will not print a ticket when you press the button unless you have already inserted some money.
- The response to the print button depends on the previous history of the use of the system: its memory.

\section*{Inputs}

What stimulus (input) does a ticket machine take account of ?

\section*{Inputs}

What stimulus (input) does a ticket machine take account of ?
- insert some money m,
- press the print ticket button t ,
- press the cancel button for refunds \(r\)

The alphabet of inputs is a set: \(I=\{m, t, r\}\)

The machines memory is represented by a set of states.
For example 1 =awaiting coins, \(2=\) ready to print \(3=\) finished printing
The set of possible states for a given machine is written \(Q=\{1,2,3\}\)
States are drawn as circles in FSM diagrams.
There are only a finite number of possible states allowed for a Finite State Machine.

\section*{Transation}

How does computation occur?
The machine has transitions from one state to another depending on the stimulus (input) provided.

The transition function is of type:
\[
T: Q \times I \rightarrow Q
\]

Transitions are drawn as edges between the states in FSM diagrams.
Edges are labelled with the input symbol for the transition. For every (state, symbol) pair there must be a transition to some other state

To simplify FSM diagrams, we sometimes do not show transitions for illegal inputs.

\section*{Starting and Stopping}

One state from \(Q\) is identified as the starting state. Think of this as the initial state of the machine before any inputs are received.

The start state is identified by an arrow pointing to it, but not coming from any other state.

A machine can stop in any state: input may cease, or there may be no matching transition to take.

One or more states from Q may be identified as accepting states. These are good places to stop. In diagrams, accepting states are denoted by a double circle

\section*{Ticket FSM}


\section*{FSM with output}

A finite state machine with output \(o \in O\), produces a response that depends on the current state as well as the most recently received input.

For example \(a=\) Please insert coins, \(b=\) Ready to print \(c=\) Finished printing
The set of possible outputs for a given machine is written \(O=\{a, b, c\}\)
Outputs could be written on the transition edges.
The transition function is of FSM with output:
\[
T: Q \times I \rightarrow Q \times O
\]

\section*{Ticket FSM with output}


\section*{Formal defination of FSMs}

Definition: A finite state machine (FSM) is defined to be a 6-tuple \(\left(Q, q_{0}, I, O, A, T,\right)\) where
- \(Q\) is a finite set of states;
- \(q_{0} \in Q\) is the start state;
- \(I\) is a finite alphabet of input symbols;
- \(O\) is a finite alphabet of output symbols;
- \(A \subseteq Q\) is a set of accepting states (A may be the empty set);
- \(T: Q \times I \rightarrow Q \times O\) is the state transition function

An input string is accepted if the FSM ends up in an accepting state after each character in the string is processed.

\section*{Parity FSM}

Below fsm that accepts a binary string if and only if the number of 1's in the string is odd. The property of whether a number is odd or even is called the parity of a number.


\section*{Excercise 1}

Design an FSM with input alphabet \(\{0,1\}\) that accepts a string \(x\) if and only if the string has numbers of 1 's is a multiple of 3 . (Zero is a multiple of 3 ).

\section*{Excercise 2}

\section*{Design an FSM with input alphabet \(\{0,1\}\) that accepts a string \(x\) if and only if the string has at least one 0 and at least one 1 .}

\section*{Excercise 3}

Design an FSM with input alphabet \(\{0,1\}\) that accepts a string \(x\) if and only if the string has no occurrences of " 00 " or " 11 " in the string. (The empty string has no occurrences of " 00 " or " 11 ".)


\section*{Questions \(\mathcal{R}\)}```


[^0]:    Algorithm 12 Compute Sum
    Input:
    1- Sequence of numbers $a_{1}, a_{2}, \ldots, a_{n}$
    2- $n$ number of inputs
    Output: Sum of the sequence
    1: sum :=0
    2: for $\mathrm{i}:=1$ to n do
    3: sum := sum $+a_{i}$
    4: end for
    5: return sum

