
ECEN 227 - Introduction to Finite Automata and
Discrete Mathematics

Dr. Mahmoud Nabil
mnmahmoud@ncat.edu

North Carolina A & T State University

October 22, 2020

October 22, 2020 1 / 65



Talk Overview

1 Algorithms

2 Analysis of Algorithms

3 Asymptotic growth of functions

4 More on the Analysis of Algorithms

5 Finite state machine

October 22, 2020 2 / 65



Algorithms

Outline

1 Algorithms

2 Analysis of Algorithms

3 Asymptotic growth of functions

4 More on the Analysis of Algorithms

5 Finite state machine

October 22, 2020 3 / 65



Algorithms

Algorithms

Algorithm

An algorithm is a step-by-step method for solving a problem.

Pseudocode

Algorithms are often described in pseudocode, which is a language in
between written English and a computer language.

Ex.

A recipe is an example of an algorithm in which :

Ingredients are the input.
Final dish is the output.
A sequence of steps to follow recipe.

October 22, 2020 4 / 65



Algorithms

Example

Algorithm 1 Sum of Three Numbers Algortihm Name

This algorithm finds the sum of three numbers Algortihm Description

Input: real numbers a,b, c Algorithm inputs

Output: Sum of a,b c Algorithm output

1: sum := a+b+c Assignment operation (variable is given a value)

2: return sum The output of an algorithm is specified by return statement

October 22, 2020 5 / 65



Algorithms

Control flow statements

The statements inside your algorithm (recipe) are generally executed
from top to bottom, in the order that they appear.

Control flow statements, however, break up the flow of execution by
employing decision making, looping, and branching, enabling your
program to conditionally execute particular blocks of statements.

Ex.

If statement.

If Else statement

For loop statement.

While loop.

October 22, 2020 6 / 65



Algorithms

If Statement

If Statement

An if-statement tests a condition, and executes one or more instructions if
the condition evaluates to true.

Algorithm 2 If statement

if Condition1 then
. . . Executed only if Condition1 is met

. . . Executed only if Condition1 is met

end if
. . . Executed normally

October 22, 2020 7 / 65



Algorithms

If Else Statement

If Else Statement

An if-else-statement tests a condition, executes one or more instructions if
the condition evaluates to true, and executes a different set of instructions
if the condition evaluates to false.

Algorithm 3 If else statement

if Condition1 then
. . . Executed only if Condition1 is met

else
. . . Executed only if Condition1 does not met

end if
. . . Executed normally

October 22, 2020 8 / 65



Algorithms

Excercise 1

Give the value for ’abs’ variable in the following cases.

October 22, 2020 9 / 65



Algorithms

Excercise 2

Give the value for min and max given x and y in the following cases.

October 22, 2020 10 / 65



Algorithms

Excercise
Find the value of ’min’ when

a=3, b=7, c=10
a=7, b=3, c=10
a=10, b=7, c=3

Algorithm 4 Smallest of three
This algorithm finds the minumum of three numbers Algortihm Description

Input: Real numbers a,b, c Algorithm inputs

Output: min Algorithm output

1: min:=a
2: if b < min then
3: min:=b
4: end if
5: if c < min then
6: min:=c
7: end if
8: return min

October 22, 2020 11 / 65



Algorithms

If Elseif Statement

If Else Statement

An if-else-statement tests a condition, executes one or more instructions if
the condition evaluates to true, and executes a different set of instructions
if the condition evaluates to false.

Algorithm 5 If else statement

if Condition1 then
. . . Executed only if Condition1 is met

else if Condition2 then
. . . Executed only if Condition2 is met and Condition1 does not met

else if Condition3 then
. . . Executed only if Condition2 is met and both Condition1 and Condition2 does not met

end if
. . . Executed normally

October 22, 2020 12 / 65



Algorithms

Example

October 22, 2020 13 / 65



Algorithms

For Statement

For Statement

In a for-loop, a block of instructions is executed a fixed number of times as
specified in the first line of the for-loop, which defines an index, a starting
value for the index, and a final value for the index.

Algorithm 6 For statement

1: for j = 1 to N do
2: . . . Executed N times

3: end for
4: . . . Executed normally

October 22, 2020 14 / 65



Algorithms

Excercise

How many iterations will be executed? Name them.

What is the final value for sum after executing the for-loop?

October 22, 2020 15 / 65



Algorithms

Example for

Execute the following algorithm and find the value of ’min’ for thr following
input: a1 =5, a2 =3, a3 =-1, a4 =7

Algorithm 7 Find smallest in sequence

Input:
1- Sequence of numbers a1, a2, . . . , an
2- n number of inputs
Output: min

1: min := a1

2: for i = 2 to n do
3: if ai < min then
4: min := ai
5: end if
6: end for
7: return min

October 22, 2020 16 / 65



Algorithms

While Statement

While Statement

A while-loop iterates an unknown number of times, ending when a certain
condition becomes false.

Algorithm 8 While statement

1: while Condition1 do
2: . . . Executed as long as Condition1 is met

3: end while
4: . . . Executed normally

October 22, 2020 17 / 65



Algorithms

Excercise

How many iterations will be executed?

What is the final value for product?

October 22, 2020 18 / 65



Algorithms

Example While

Execute the following algorithm on 7, 3, 1, 4 and x = 1, also for x = 2

Algorithm 9 Search for a number in a sequence

Input:
1- Sequence of numbers a1, a2, . . . , an
2- n number of inputs
3- x a number to search for
Output: Index of first occurence of x in the sequence or -1 if x not found

1: i := 1
2: while ai ≠ x and i < n do
3: i:= i + 1
4: end while
5: if ai = x then
6: return i
7: end if
8: return -1

October 22, 2020 19 / 65



Algorithms

Neseted Loops

How many times is the variable count increased?

What is the final value of count?

October 22, 2020 20 / 65



Algorithms

Example Nested Loop

Find the final value of ’count’ after execute the algorithm for 5, 1, 5, 6

Algorithm 10 Count duplicates

Input:
1- Sequence of numbers a1, a2, . . . , an
2- n number of inputs
Output: count: the number of duplicate pairs

1: count := 0
2: for i := 1 to n-1 do
3: for j := i + 1 to n do
4: if ai == aj then
5: count := count + 1
6: end if
7: end for
8: end for
9: return count

October 22, 2020 21 / 65



Algorithms

Excercise 1

Write an algorithm in pseudocode

Input: a1, a2,...,an, a sequence of numbers, where n ≥ 1
n, the length of the sequence.
Output: Sum of the elements in the list.

October 22, 2020 22 / 65



Algorithms

Excercise 2

Write an algorithm in pseudocode

Input: a1, a2,...,an, a sequence of numbers, where n ≥ 1
n, the length of the sequence.
Output: ”True” if there are two consecutive numbers in the sequence that
are the same and ”False” otherwise.

October 22, 2020 23 / 65



Algorithms

Excercise 3

Write an algorithm in pseudocode

Input: a1, a2,...,an, a sequence of numbers, where n ≥ 1
n, the length of the sequence.
Output: ”True” if there are any two numbers in the sequence whose sum
is 0 and ”False” otherwise.

October 22, 2020 24 / 65



Algorithms

Excercise 4

Write an algorithm in pseudocode

Input: a1, a2,...,an, a sequence of numbers, where n ≥ 1
n, the length of the sequence.
T, a target number.
Output: ”True” if there are any two numbers in the sequence whose mul-
tiplication is T and ”False” otherwise.

October 22, 2020 25 / 65



Analysis of Algorithms

Outline

1 Algorithms

2 Analysis of Algorithms

3 Asymptotic growth of functions

4 More on the Analysis of Algorithms

5 Finite state machine

October 22, 2020 26 / 65



Analysis of Algorithms

Time Complexity

Algorithm 11 Compute Sum

Input:
1- Sequence of numbers a1, a2, . . . , an
2- n number of inputs
Output: Sum of the sequence

1: sum := 0
2: for i := 1 to n do
3: sum := sum + ai
4: end for
5: return sum

How much time this algorithm take?

October 22, 2020 27 / 65



Analysis of Algorithms

Time Complexity

Given an input of size n to the algorithm, what is the lower bound
and the upper bound of the number of operations to be executed?

What are the operations we care for?

Assignment operation
Arithmetic operations.
Comparison operation.
Return statements.

October 22, 2020 28 / 65



Analysis of Algorithms

Time Complexity

Given an input of size n to the algorithm, what is the lower bound
and the upper bound of the number of operations to be executed?

What are the operations we care for?

Assignment operation
Arithmetic operations.
Comparison operation.
Return statements.

October 22, 2020 28 / 65



Analysis of Algorithms

Example Time Complexity

Algorithm 12 Compute Sum

Input:
1- Sequence of numbers a1, a2, . . . , an
2- n number of inputs
Output: Sum of the sequence

1: sum := 0
2: for i := 1 to n do
3: sum := sum + ai
4: end for
5: return sum

October 22, 2020 29 / 65



Analysis of Algorithms

Example Time Complexity

Algorithm 13 Compute Sum

Input:
1- Sequence of numbers a1, a2, . . . , an
2- n number of inputs

Output: Sum of the sequence

1: sum := 0 1 assignment op

2: for i := 1 to n For loop compare i and assign i (2 ops) do
3: sum := sum + ai 1 addition and 1 for assignment (2 ops)

4: end for
5: return sum 1 return op

Time Complexity = f(n) = # of operations on a sequence of length n

f(n) = 1 + 2n + 2n + 1 = 4n + 2

October 22, 2020 29 / 65



Analysis of Algorithms

Time Complexity

In evaluating algorithms, the focus is on how the function f grows
with n, ignoring small input sizes and constant factors that depend on
the specifics of the implementation and have less impact on the
execution time.

Thus, we introduce the notion of the asymptotic time complexity.

Asymptotic time complexity

Asymptotic time complexity of an algorithm is the rate of asymptotic
growth of the algorithm’s time complexity with the input size.

October 22, 2020 30 / 65



Analysis of Algorithms

Time Complexity

In evaluating algorithms, the focus is on how the function f grows
with n, ignoring small input sizes and constant factors that depend on
the specifics of the implementation and have less impact on the
execution time.

Thus, we introduce the notion of the asymptotic time complexity.

Asymptotic time complexity

Asymptotic time complexity of an algorithm is the rate of asymptotic
growth of the algorithm’s time complexity with the input size.

October 22, 2020 30 / 65



Analysis of Algorithms

Time Complexity

In evaluating algorithms, the focus is on how the function f grows
with n, ignoring small input sizes and constant factors that depend on
the specifics of the implementation and have less impact on the
execution time.

Thus, we introduce the notion of the asymptotic time complexity.

Asymptotic time complexity

Asymptotic time complexity of an algorithm is the rate of asymptotic
growth of the algorithm’s time complexity with the input size.

October 22, 2020 30 / 65



Asymptotic growth of functions

Outline

1 Algorithms

2 Analysis of Algorithms

3 Asymptotic growth of functions

4 More on the Analysis of Algorithms

5 Finite state machine

October 22, 2020 31 / 65



Asymptotic growth of functions

The asymptotic growth

The asymptotic growth

The asymptotic growth of the function f is a measure of how fast the
output f(n) grows as the input n grows.

Three classification of functions using O, Ω,, and Θ notation (called
asymptotic notation).

Asymptotic notation is a useful tool for evaluating the efficiency of
algorithms.

October 22, 2020 32 / 65



Asymptotic growth of functions

The asymptotic growth

October 22, 2020 33 / 65



Asymptotic growth of functions

Big O notation

Big O

Let f and g be two functions from Z+ to Z+. Then f = O(g) if there are
positive constants c and n0 such that for any n ≥ n0, f(n) ≤ c . g(n).

The constants c and
n0 in the definition of
Oh-notation are said
to be a witness to the
fact that f = O(g).

October 22, 2020 34 / 65



Asymptotic growth of functions

Big O notation

f(n) = 3n3 + 5n2 − 7
g(n) = n3

Claim: f = O(g).
Proof.

Select c = 8 and n0 = 1.

3n3 + 5n2 − 7 ≤ 3n3 + 5n2

3n3 + 5n2 − 7 ≤ 3n3 + 5n3

3n3 + 5n2 − 7 ≤ 8n3

f(n) ≤ 8 g(n)

f(n) = O(g(n))

October 22, 2020 35 / 65



Asymptotic growth of functions

Big O notation

f(n) = 3n3 + 5n2 − 7
g(n) = n3

Claim: f = O(g).
Proof.

Select c = 8 and n0 = 1.

3n3 + 5n2 − 7 ≤ 3n3 + 5n2

3n3 + 5n2 − 7 ≤ 3n3 + 5n3

3n3 + 5n2 − 7 ≤ 8n3

f(n) ≤ 8 g(n)

f(n) = O(g(n))

October 22, 2020 35 / 65



Asymptotic growth of functions

Big O notation

f(n) = 3n3 + 5n2 − 7
g(n) = n3

Claim: f = O(g).
Proof.

Select c = 8 and n0 = 1.

3n3 + 5n2 − 7 ≤ 3n3 + 5n2

3n3 + 5n2 − 7 ≤ 3n3 + 5n3

3n3 + 5n2 − 7 ≤ 8n3

f(n) ≤ 8 g(n)

f(n) = O(g(n))

October 22, 2020 35 / 65



Asymptotic growth of functions

Big O notation

f(n) = 3n3 + 5n2 − 7
g(n) = n3

Claim: f = O(g).
Proof.

Select c = 8 and n0 = 1.

3n3 + 5n2 − 7 ≤ 3n3 + 5n2

3n3 + 5n2 − 7 ≤ 3n3 + 5n3

3n3 + 5n2 − 7 ≤ 8n3

f(n) ≤ 8 g(n)

f(n) = O(g(n))

October 22, 2020 35 / 65



Asymptotic growth of functions

Big O notation

f(n) = 3n3 + 5n2 − 7
g(n) = n3

Claim: f = O(g).
Proof.

Select c = 8 and n0 = 1.

3n3 + 5n2 − 7 ≤ 3n3 + 5n2

3n3 + 5n2 − 7 ≤ 3n3 + 5n3

3n3 + 5n2 − 7 ≤ 8n3

f(n) ≤ 8 g(n)

f(n) = O(g(n))

October 22, 2020 35 / 65



Asymptotic growth of functions

Big O notation

f(n) = 3n3 + 5n2 − 7
g(n) = n3

Claim: f = O(g).
Proof.

Select c = 8 and n0 = 1.

3n3 + 5n2 − 7 ≤ 3n3 + 5n2

3n3 + 5n2 − 7 ≤ 3n3 + 5n3

3n3 + 5n2 − 7 ≤ 8n3

f(n) ≤ 8 g(n)

f(n) = O(g(n))

October 22, 2020 35 / 65



Asymptotic growth of functions

Big Omega notation

Big Omega Ω

Let f and g be two functions from Z+ to Z+. Then f = Ω(g) if there are
positive constants c and n0 such that for any n ≥ n0, f(n) ≥ c . g(n).

The constants c and
n0 in the definition of
Oh-notation are said
to be a witness to the
fact that f = Ω(g).

October 22, 2020 36 / 65



Asymptotic growth of functions

Big Omega notation

f(n) = 1
2n

2 + 7n + 3
g(n) = n2

Claim: f = Ω(g).
Proof.

Select c = 1
2 and n0 = 1.

n ≥ 0

1
2n

2 + 7n + 3 ≥ 1
2n

2

f(n) ≥ 1
2 g(n)

f(n) = Ω(g(n))

October 22, 2020 37 / 65



Asymptotic growth of functions

Big Omega notation

f(n) = 1
2n

2 + 7n + 3
g(n) = n2

Claim: f = Ω(g).
Proof.

Select c = 1
2 and n0 = 1.

n ≥ 0
1
2n

2 + 7n + 3 ≥ 1
2n

2

f(n) ≥ 1
2 g(n)

f(n) = Ω(g(n))

October 22, 2020 37 / 65



Asymptotic growth of functions

Big Omega notation

f(n) = 1
2n

2 + 7n + 3
g(n) = n2

Claim: f = Ω(g).
Proof.

Select c = 1
2 and n0 = 1.

n ≥ 0
1
2n

2 + 7n + 3 ≥ 1
2n

2

f(n) ≥ 1
2 g(n)

f(n) = Ω(g(n))

October 22, 2020 37 / 65



Asymptotic growth of functions

Big Omega notation

f(n) = 1
2n

2 + 7n + 3
g(n) = n2

Claim: f = Ω(g).
Proof.

Select c = 1
2 and n0 = 1.

n ≥ 0
1
2n

2 + 7n + 3 ≥ 1
2n

2

f(n) ≥ 1
2 g(n)

f(n) = Ω(g(n))

October 22, 2020 37 / 65



Asymptotic growth of functions

Relationship of Oh-notation and Ω-notation.

Theorem

Let f and g be two functions from Z+ to Z+. Then f = Ω(g) if and only if
g = O(f).

October 22, 2020 38 / 65



Asymptotic growth of functions

Θ Notation

Θ Notation

Let f and g be two functions Z+ to Z+. f = Θ(g) if f = O(g) and f = Ω(g).

Ex.

f(n) = 4n3 + 7n + 16 7n and 16 are called the lower order terms

f(n) = Θ(n3)

Theorem

Let p(n) be a degree-k polynomial of the form in which ak > 0.

(ak)n
k + (ak−1)n

k−1 + . . . + (a1)n + a0

Then p(n) is Θ(nk).

October 22, 2020 39 / 65



Asymptotic growth of functions

Algorithmic Complexity Function

October 22, 2020 40 / 65



Asymptotic growth of functions

Algorithmic Complexity Function

October 22, 2020 41 / 65



Asymptotic growth of functions

Excercise

Characterize the rate of growth of each function f below by giving a function
g such that f = Θ(g).

f(n) = n8 + 3n − 4

Θ(n8)

f(n) = 2 ∗ 3n

Θ(3n)

f(n) = 2n + 3n

Θ(3n)

f(n) = 9(n log n) + 5(log log n) + 5

Θ(n log n)

f(n) = n log37 n

Θ(n log n)

f(n) = n21 + (1.1)n

Θ(1.1n)

October 22, 2020 42 / 65



Asymptotic growth of functions

Excercise

Characterize the rate of growth of each function f below by giving a function
g such that f = Θ(g).

f(n) = n8 + 3n − 4

Θ(n8)

f(n) = 2 ∗ 3n

Θ(3n)

f(n) = 2n + 3n

Θ(3n)

f(n) = 9(n log n) + 5(log log n) + 5

Θ(n log n)

f(n) = n log37 n

Θ(n log n)

f(n) = n21 + (1.1)n

Θ(1.1n)

October 22, 2020 42 / 65



Asymptotic growth of functions

Excercise

Characterize the rate of growth of each function f below by giving a function
g such that f = Θ(g).

f(n) = n8 + 3n − 4

Θ(n8)

f(n) = 2 ∗ 3n

Θ(3n)

f(n) = 2n + 3n

Θ(3n)

f(n) = 9(n log n) + 5(log log n) + 5

Θ(n log n)

f(n) = n log37 n

Θ(n log n)

f(n) = n21 + (1.1)n

Θ(1.1n)

October 22, 2020 42 / 65



Asymptotic growth of functions

Excercise

Characterize the rate of growth of each function f below by giving a function
g such that f = Θ(g).

f(n) = n8 + 3n − 4

Θ(n8)

f(n) = 2 ∗ 3n

Θ(3n)

f(n) = 2n + 3n

Θ(3n)

f(n) = 9(n log n) + 5(log log n) + 5

Θ(n log n)

f(n) = n log37 n

Θ(n log n)

f(n) = n21 + (1.1)n

Θ(1.1n)

October 22, 2020 42 / 65



Asymptotic growth of functions

Excercise

Characterize the rate of growth of each function f below by giving a function
g such that f = Θ(g).

f(n) = n8 + 3n − 4

Θ(n8)

f(n) = 2 ∗ 3n

Θ(3n)

f(n) = 2n + 3n

Θ(3n)

f(n) = 9(n log n) + 5(log log n) + 5

Θ(n log n)

f(n) = n log37 n

Θ(n log n)

f(n) = n21 + (1.1)n

Θ(1.1n)

October 22, 2020 42 / 65



Asymptotic growth of functions

Excercise

Characterize the rate of growth of each function f below by giving a function
g such that f = Θ(g).

f(n) = n8 + 3n − 4

Θ(n8)

f(n) = 2 ∗ 3n

Θ(3n)

f(n) = 2n + 3n

Θ(3n)

f(n) = 9(n log n) + 5(log log n) + 5

Θ(n log n)

f(n) = n log37 n

Θ(n log n)

f(n) = n21 + (1.1)n

Θ(1.1n)

October 22, 2020 42 / 65



Asymptotic growth of functions

Excercise

Characterize the rate of growth of each function f below by giving a function
g such that f = Θ(g).

f(n) = n8 + 3n − 4

Θ(n8)

f(n) = 2 ∗ 3n

Θ(3n)

f(n) = 2n + 3n

Θ(3n)

f(n) = 9(n log n) + 5(log log n) + 5

Θ(n log n)

f(n) = n log37 n

Θ(n log n)

f(n) = n21 + (1.1)n

Θ(1.1n)

October 22, 2020 42 / 65



More on the Analysis of Algorithms

Outline

1 Algorithms

2 Analysis of Algorithms

3 Asymptotic growth of functions

4 More on the Analysis of Algorithms

5 Finite state machine

October 22, 2020 43 / 65



More on the Analysis of Algorithms

Example 1

Algorithm 14 Find smallest in sequence

Input:
1- Sequence of numbers a1, a2, . . . , an
2- n number of inputs
Output: Minumum of a1, a2, . . . , an

1: min := a1 1 assignment op

2: for i = 2 to n For loop compare i and assign i (2 ops) do
3: if ai < min 1 op for comparison + 1 op (in worst-case) for assignment then
4: min := ai
5: end if
6: end for
7: return min 1 return op

f(n) = 4(n-1) + 2 = c (n-1) + d = θ(n)

October 22, 2020 44 / 65



More on the Analysis of Algorithms

Example 2

Algorithm 15 Search for a number x in a sequence

Input: a1, a2, . . . , an , n, x
Output: Index if found or -1 if not found

1: i := 1 1 aasign op

2: while ai ≠ x and i < n 3 op = 2 compare and 1 logic and do
3: i:= i + 1 2 op = 1 add + 1 assign (worst case)

4: end while
5: if ai = x 1 compare op then
6: return i 1 return op

7: end if
8: return -1 1 return op

f(n) = # of ops on sequence of length n
f(n) = c1

®
ops before loop

+ c2n
°

ops within the loop

+ c3
®

ops after loop

= Θ(n)

October 22, 2020 45 / 65



More on the Analysis of Algorithms

Worst-case complexity

The number of operations performed by the previous algorithm may
depend on the actual data in the input sequence not just the
sequence size.

What if x is the first element in the sequence? Best Case
What if x is the last element in the sequence or does not exist? Worst
Case

October 22, 2020 46 / 65



More on the Analysis of Algorithms

Worst Case Complexity

Worst-case time complexity

It is defined to be the maximum number of atomic operations the
algorithm requires, where the maximum is taken over all inputs of size n.

Usually we care about the worst case in our analysis.

October 22, 2020 47 / 65



More on the Analysis of Algorithms

Worst Case Complexity

Worst-case time complexity

It is defined to be the maximum number of atomic operations the
algorithm requires, where the maximum is taken over all inputs of size n.

Usually we care about the worst case in our analysis.

October 22, 2020 47 / 65



More on the Analysis of Algorithms

Analysis of Nested Loop

Algorithm 16 Count duplicates

Input: a1, a2, . . . , an, n
Output: count: the number of duplicate pairs

1: count := 0
2: for i := 1 to n-1 do
3: for j := i + 1 to n do
4: if ai == aj then
5: count := count + 1
6: end if
7: end for
8: end for
9: return count

f(n) =
c
®

inner loop ops

[(n-1) + (n-2) + . . . + 1] + [b + b + ⋅ ⋅ ⋅ + b]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n-1 outer loop header

+ d
®

before or after loops

October 22, 2020 48 / 65



More on the Analysis of Algorithms

Analysis of Nested Loop

Algorithm 17 Count duplicates

Input: a1, a2, . . . , an, n
Output: count: the number of duplicate pairs

1: count := 0
2: for i := 1 to n-1 do
3: for j := i + 1 to n do
4: if ai == aj then
5: count := count + 1
6: end if
7: end for
8: end for
9: return count

f(n) =
c
®

inner loop ops

[(n-1) + (n-2) + . . . + 1] + [b + b + ⋅ ⋅ ⋅ + b]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n-1 outer loop header

+ d
®

before or after loops

October 22, 2020 48 / 65



More on the Analysis of Algorithms

Analysis of Nested Loop

f(n) =
c
®

inner loop ops

[(n-1) + (n-2) + . . . + 1] + [b + b + ⋅ ⋅ ⋅ + b]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n-1 outer loop

+ d
®

before or after loops

Note.

[(n − 1) + (n − 2)+. . .+1] = n(n−1)
2

f(n) = c1n
2 + c2n + c3 = Θ(n2)

October 22, 2020 49 / 65



Finite state machine

Outline

1 Algorithms

2 Analysis of Algorithms

3 Asymptotic growth of functions

4 More on the Analysis of Algorithms

5 Finite state machine

October 22, 2020 50 / 65



Finite state machine

Introduction

FSMs are the simplest model of computation.

Finite State Machines (FSMs) are (essentially) computers with very
small memory

FSMs are widely used in practice for simple mechanisms: automatic
doors, lifts, microwave or washing machine controllers, and many
other electromechanical devices.

October 22, 2020 51 / 65



Finite state machine

Example

For example, in the case of a parking ticket machine, it will not print
a ticket when you press the button unless you have already inserted
some money.

The response to the print button depends on the previous history of
the use of the system: its memory.

October 22, 2020 52 / 65



Finite state machine

Inputs

What stimulus (input) does a ticket machine take account of ?

insert some money m,

press the print ticket button t,

press the cancel button for refunds r

The alphabet of inputs is a set: I = {m, t, r}

October 22, 2020 53 / 65



Finite state machine

Inputs

What stimulus (input) does a ticket machine take account of ?

insert some money m,

press the print ticket button t,

press the cancel button for refunds r

The alphabet of inputs is a set: I = {m, t, r}

October 22, 2020 53 / 65



Finite state machine

The machines memory is represented by a set of states.

For example 1=awaiting coins, 2=ready to print 3=finished printing

The set of possible states for a given machine is written Q = {1,2,3}

States are drawn as circles in FSM diagrams.

There are only a finite number of possible states allowed for a Finite State
Machine.

October 22, 2020 54 / 65



Finite state machine

Transation

How does computation occur?

The machine has transitions from one state to another depending on the
stimulus (input) provided.

The transition function is of type:

T ∶ Q × I → Q

Transitions are drawn as edges between the states in FSM diagrams.

Edges are labelled with the input symbol for the transition. For every (state,
symbol) pair there must be a transition to some other state

To simplify FSM diagrams, we sometimes do not show transitions for illegal
inputs.

October 22, 2020 55 / 65



Finite state machine

Starting and Stopping

One state from Q is identified as the starting state. Think of this as the
initial state of the machine before any inputs are received.

The start state is identified by an arrow pointing to it, but not coming from
any other state.

A machine can stop in any state: input may cease, or there may be no
matching transition to take.

One or more states from Q may be identified as accepting states. These
are good places to stop. In diagrams, accepting states are denoted by a
double circle

October 22, 2020 56 / 65



Finite state machine

Ticket FSM

1start 2 3
m

r

t

October 22, 2020 57 / 65



Finite state machine

FSM with output

A finite state machine with output o ∈ O, produces a response that depends
on the current state as well as the most recently received input.

For example a=Please insert coins, b=Ready to print c=Finished printing

The set of possible outputs for a given machine is written O = {a,b, c}

Outputs could be written on the transition edges.

The transition function is of FSM with output:

T ∶ Q × I → Q ×O

October 22, 2020 58 / 65



Finite state machine

Ticket FSM with output

1start 2 3
m/b

r/a

t/c

October 22, 2020 59 / 65



Finite state machine

Formal defination of FSMs

Definition: A finite state machine (FSM) is defined to be a 6-tuple
(Q,q0, I ,O,A,T , ) where

Q is a finite set of states;

q0 ∈ Q is the start state;

I is a finite alphabet of input symbols;

O is a finite alphabet of output symbols;

A ⊆ Q is a set of accepting states (A may be the empty set);

T ∶ Q × I → Q ×O is the state transition function

An input string is accepted if the FSM ends up in an accepting state after
each character in the string is processed.

October 22, 2020 60 / 65



Finite state machine

Parity FSM

Below fsm that accepts a binary string if and only if the number of 1’s in
the string is odd. The property of whether a number is odd or even is called
the parity of a number.

October 22, 2020 61 / 65



Finite state machine

Excercise 1

Design an FSM with input alphabet {0, 1} that accepts a string x if and
only if the string has numbers of 1’s is a multiple of 3. (Zero is a multiple
of 3).

October 22, 2020 62 / 65



Finite state machine

Excercise 2

Design an FSM with input alphabet {0, 1} that accepts a string x if and
only if the string has at least one 0 and at least one 1.

October 22, 2020 63 / 65



Finite state machine

Excercise 3

Design an FSM with input alphabet {0, 1} that accepts a string x if and
only if the string has no occurrences of ”00” or ”11” in the string. (The
empty string has no occurrences of ”00” or ”11”.)

October 22, 2020 64 / 65



Finite state machine

Questions

October 22, 2020 65 / 65


	Algorithms
	Analysis of Algorithms
	Asymptotic growth of functions
	More on the Analysis of Algorithms
	Finite state machine



